Serie 06 - Crystallography
Transcription
Serie 06 - Crystallography
Übungsaufgaben zur Kristallographie HS14 Serie 6 „International Tables for Crystallography“ Betrachten Sie die Kopien aus den „International Tables“ zu den Raumgruppen P4/mmm und Pmmm. a) Welche Symmetrieelemente sind im Symmetriegerüst der Raumgruppe P4/mmm zu erkennen? Ordnen Sie diese jeweils den kristallographisch relevanten Richtungen des Kristallsystems zu. b) Welches sind die Atomlagen mit höchster Symmetrie in P4/mmm und wie lautet ihre Symmetrie? c) Aus welchen kristallographischen Richtungen betrachtet ist an einem Objekt mit Symmetrie P4/mmm nur eine orthorhombische Symmetrie erkennbar? Welcher Ebenengruppe entspricht diese Symmetrie? Die Raumgruppe Pmmm ist eine Untergruppe von P4/mmm. Der Index der GruppeUntergruppe-Beziehung ist 2. d) Welche Symmetrieelemente entfallen im Vergleich zu P4/mmm? e) Zu welchen Atomlagen gehört die Position 0,0,0 in den Raumgruppen P4/mmm und Pmmm und was unterscheidet diese? f) Wie verhält es sich mit der Position 0.10, 0.33, 0? Zu welcher Lage gehören diese Koordinaten? Berechnen Sie die Koordinaten aller entstehenden Atompositionen in den Raumgruppen P4/mmm und Pmmm. (Geben Sie die Koordinaten innerhalb einer Elementarzelle an; 0 ≤ x, y, z < 1.) g) In Raumgruppe Pmmm wird von einem Atom an 0.10, 0.33, 0 nur ein Teil der Positionen erzeugt, die in P4/mmm entstehen. Welche zusätzliche Atomlage müsste man in Raumgruppe Pmmm hinzufügen um die übrigen Koordinaten zu erzeugen? Welche der Positionen befindet sich innerhalb der asymmetrischen Einheit? Walter Steurer, Thomas Weber, Julia Dshemuchadse, Laboratorium für Kristallographie http://www.crystal.mat.ethz.ch/education/courses/HS2014/Kristallographie International Tables for Crystallography (2006). Vol. A, Space group 123, pp. 430–431. P 4/m m m D14h No. 123 P 4/m 2/m 2/m 4/m m m Tetragonal Patterson symmetry P 4/m m m Origin at centre (4/m m m) Asymmetric unit 0 ≤ x ≤ 12 ; 0 ≤ y ≤ 21 ; 0 ≤ z ≤ 12 ; x≤y Symmetry operations (1) (5) (9) (13) 1 2 0, y, 0 1̄ 0, 0, 0 m x, 0, z (2) (6) (10) (14) 2 2 m m 0, 0, z x, 0, 0 x, y, 0 0, y, z (3) (7) (11) (15) 4+ 2 4̄+ m 0, 0, z x, x, 0 0, 0, z; 0, 0, 0 x, x̄, z (4) (8) (12) (16) 4− 2 4̄− m 0, 0, z x, x̄, 0 0, 0, z; 0, 0, 0 x, x, z Maximal non-isomorphic subgroups I [2] P 4̄ m 2 (115) 1; 2; 7; 8; 11; 12; 13; 14 IIa IIb [2] P 4̄ 2 m (111) 1; 2; 5; 6; 11; 12; 15; 16 [2] P 4 m m (99) 1; 2; 3; 4; 13; 14; 15; 16 [2] P 4 2 2 (89) 1; 2; 3; 4; 5; 6; 7; 8 [2] P 4/m 1 1 (P4/m, 83) 1; 2; 3; 4; 9; 10; 11; 12 [2] P 2/m 1 2/m (C m m m, 65) 1; 2; 7; 8; 9; 10; 15; 16 [2] P 2/m 2/m 1 (P m m m, 47) 1; 2; 5; 6; 9; 10; 13; 14 none [2] P 42 /m c m (c# = 2c) (132); [2] P 42 /m m c (c# = 2c) (131); [2] P 4/m c c (c# = 2c) (124); [2] C 4/e m m (a# = 2a, b# = 2b) (P 4/n m m, 129); [2] C 4/m m d (a# = 2a, b# = 2b) (P 4/m b m, 127); [2] C 4/e m d (a# = 2a, b# = 2b) (P 4/n b m, 125); [2] F 4/m m c (a# = 2a, b# = 2b, c# = 2c) (I 4/m c m, 140); [2] F 4/m m m (a# = 2a, b# = 2b, c# = 2c) (I 4/m m m, 139) Maximal isomorphic subgroups of lowest index IIc [2] P 4/m m m (c# = 2c) (123); [2] C 4/m m m (a# = 2a, b# = 2b) (P 4/m m m, 123) Minimal non-isomorphic supergroups I [3] P m 3̄ m (221) II [2] I 4/m m m (139) Copyright 2006 International Union of Crystallography 430 No. 123 CONTINUED P 4/m m m Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5); (9) Positions Coordinates Multiplicity, Wyckoff letter, Site symmetry 16 u 1 8 t 8 Reflection conditions General: (1) (5) (9) (13) x, y, z x̄, y, z̄ x̄, ȳ, z̄ x, ȳ, z (2) (6) (10) (14) (3) (7) (11) (15) x̄, ȳ, z x, ȳ, z̄ x, y, z̄ x̄, y, z (4) (8) (12) (16) ȳ, x, z y, x, z̄ y, x̄, z̄ ȳ, x̄, z y, x̄, z ȳ, x̄, z̄ ȳ, x, z̄ y, x, z no conditions Special: .m. 1 2 1 2 x, , z x̄, , z̄ x̄, , z x, , z̄ 1 2 1 2 , x̄, z , x̄, z̄ no extra conditions s .m. x, 0, z x̄, 0, z̄ x̄, 0, z x, 0, z̄ 0, x, z 0, x, z̄ 0, x̄, z 0, x̄, z̄ no extra conditions 8 r ..m x, x, z x̄, x, z̄ x̄, x̄, z x, x̄, z̄ x̄, x, z x, x, z̄ x, x̄, z x̄, x̄, z̄ no extra conditions 8 q m.. x, y, 21 x̄, y, 21 x̄, ȳ, 12 x, ȳ, 12 ȳ, x, 12 y, x, 12 y, x̄, 21 ȳ, x̄, 21 no extra conditions 8 p m.. x, y, 0 x̄, y, 0 x̄, ȳ, 0 x, ȳ, 0 ȳ, x, 0 y, x, 0 y, x̄, 0 ȳ, x̄, 0 no extra conditions 4 o m 2 m. x, 12 , 21 x̄, 21 , 12 1 2 , x, 12 1 2 , x̄, 21 no extra conditions 4 n m 2 m. x, 12 , 0 x̄, 21 , 0 1 2 , x, 0 1 2 , x̄, 0 no extra conditions 4 m m 2 m. x, 0, 21 x̄, 0, 12 0, x, 21 0, x̄, 12 no extra conditions 4 l m 2 m. x, 0, 0 x̄, 0, 0 0, x, 0 0, x̄, 0 no extra conditions 4 k m . 2m x, x, 12 x̄, x̄, 12 x̄, x, 12 x, x̄, 21 no extra conditions 4 j m . 2m x, x, 0 x̄, x̄, 0 x̄, x, 0 x, x̄, 0 no extra conditions 4 i 2 m m. 0, 12 , z 1 2 , 0, z 0, 21 , z̄ 1 2 2 h 4mm 1 2 , 21 , z 1 2 , 21 , z̄ no extra conditions 2 g 4mm 0, 0, z 0, 0, z̄ no extra conditions 2 f m m m. 0, 12 , 0 1 2 , 0, 0 hkl : h + k = 2n 2 e m m m. 0, 12 , 21 1 2 , 0, 21 hkl : h + k = 2n 1 d 4/m m m 1 2 , 21 , 12 no extra conditions 1 c 4/m m m 1 2 , 21 , 0 no extra conditions 1 b 4/m m m 0, 0, 12 no extra conditions 1 a 4/m m m 0, 0, 0 no extra conditions 1 2 1 2 , x, z , x, z̄ 1 2 1 2 , 0, z̄ hkl : h + k = 2n Symmetry of special projections Along [001] p 4 m m a# = a b# = b Origin at 0, 0, z Along [110] p 2 m m b# = c a# = 21 (−a + b) Origin at x, x, 0 Along [100] p 2 m m b# = c a# = b Origin at x, 0, 0 (Continued on preceding page) 431 International Tables for Crystallography (2006). Vol. A, Space group 47, pp. 262–263. Pmmm D12h No. 47 P 2/m 2/m 2/m mmm Orthorhombic Patterson symmetry P m m m Origin at centre (m m m) Asymmetric unit 0 ≤ x ≤ 12 ; 0 ≤ y ≤ 21 ; 0≤z≤ 1 2 Symmetry operations (1) 1 (5) 1̄ 0, 0, 0 (2) 2 0, 0, z (6) m x, y, 0 (3) 2 0, y, 0 (7) m x, 0, z (4) 2 x, 0, 0 (8) m 0, y, z Maximal non-isomorphic subgroups (continued) IIa none IIb [2] P m m a (a" = 2a) (51); [2] P m a m (a" = 2a) (P m m a, 51); [2] P m a a (a" = 2a) (P c c m, 49); [2] P b m m (b" = 2b) (P m m a, 51); [2] P m m b (b" = 2b) (Pm m a, 51); [2] P b m b (b" = 2b) (P c c m, 49); [2] Pc m m (c" = 2c) (P m m a, 51); [2] P m c m (c" = 2c) (Pm m a, 51); [2] P c c m (c" = 2c) (49); [2] A e m m (b" = 2b, c" = 2c) (C m m e, 67); [2] A m m m (b" = 2b, c" = 2c) (C m m m, 65); [2] B m e m (a" = 2a, c" = 2c) (C m m e, 67); [2] B m m m (a" = 2a, c" = 2c) (C m m m, 65); [2] C m m e (a" = 2a, b" = 2b) (67); [2] C m m m (a" = 2a, b" = 2b) (65); [2] F m m m (a" = 2a, b" = 2b, c" = 2c) (69) Maximal isomorphic subgroups of lowest index IIc [2] P m m m (a" = 2a or b" = 2b or c" = 2c) (47) Minimal non-isomorphic supergroups I [2] P 4/m m m (123); [2] P 42 /m m c (131); [3] P m 3̄ (200) II [2] A m m m (C m m m, 65); [2] B m m m (C m m m, 65); [2] C m m m (65); [2] I m m m (71) Copyright 2006 International Union of Crystallography 262 No. 47 CONTINUED Pmmm Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); (2); (3); (5) Positions Coordinates Multiplicity, Wyckoff letter, Site symmetry 8 α 1 Reflection conditions General: (1) x, y, z (5) x̄, ȳ, z̄ (2) x̄, ȳ, z (6) x, y, z̄ (3) x̄, y, z̄ (7) x, ȳ, z (4) x, ȳ, z̄ (8) x̄, y, z no conditions Special: no extra conditions 4 z ..m x, y, 12 x̄, ȳ, 12 x̄, y, 21 x, ȳ, 12 4 y ..m x, y, 0 x̄, ȳ, 0 x̄, y, 0 x, ȳ, 0 4 x .m. x, 21 , z x̄, 12 , z x̄, 12 , z̄ x, 21 , z̄ 4 w .m. x, 0, z x̄, 0, z x̄, 0, z̄ x, 0, z̄ 4 v m.. 1 2 4 u m.. 0, y, z 2 t mm2 1 2 , 21 , z 1 2 , 12 , z̄ 2 s mm2 1 2 , 0, z 1 2 , 0, z̄ 2 r mm2 0, 12 , z 0, 12 , z̄ 2 q mm2 0, 0, z 0, 0, z̄ 2 p m2m 1 2 , y, 12 1 2 , ȳ, 21 1 h mmm 1 2 2 o m2m 1 2 , y, 0 1 2 , ȳ, 0 1 g mmm 0, 12 , 21 2 n m2m 0, y, 12 0, ȳ, 21 1 f mmm 1 2 2 m m2m 0, y, 0 0, ȳ, 0 1 e mmm 0, 21 , 0 2 l 2mm x, 21 , 12 x̄, 21 , 21 1 d mmm 1 2 2 k 2mm x, 12 , 0 x̄, 12 , 0 1 c mmm 0, 0, 12 2 j 2mm x, 0, 21 x̄, 0, 21 1 b mmm 1 2 2 i 2mm x, 0, 0 x̄, 0, 0 1 a mmm 0, 0, 0 , y, z 1 2 , ȳ, z 1 2 0, ȳ, z , y, z̄ 0, y, z̄ 1 2 , ȳ, z̄ 0, ȳ, z̄ , 12 , 21 , 12 , 0 , 0, 21 , 0, 0 Symmetry of special projections Along [010] p 2 m m a" = c b" = a Origin at 0, y, 0 Along [100] p 2 m m a" = b b" = c Origin at x, 0, 0 Along [001] p 2 m m a" = a b" = b Origin at 0, 0, z Maximal non-isomorphic subgroups I [2] P m m 2 (25) 1; 2; 7; 8 [2] P m 2 m (P m m 2, 25) [2] P 2 m m (P m m 2, 25) [2] P 2 2 2 (16) [2] P 1 1 2/m (P2/m, 10) [2] P 1 2/m 1 (P2/m, 10) [2] P 2/m 1 1 (P2/m, 10) 1; 1; 1; 1; 1; 1; 3; 4; 2; 2; 3; 4; 6; 6; 3; 5; 5; 5; 8 7 4 6 7 8 (Continued on preceding page) 263