High-Power Diode Lasers
Transcription
High-Power Diode Lasers
Roland Diehl (Ed.) High-Power Diode Lasers Fundamentals, Technology, Applications With Contributions by Numerous Experts With 260 Figures and 20 Tables iNSTITUT FOR ANGEWANDTE PHYSlK TECHN1SCHE UNIVERSITAT DARMSTADT Springer Contents Introduction to Power Diode Lasers Peter Unger 1. Fundamental Aspects of Diode Lasers 1.1. Emission and Absorption in Semiconductors 1.2. Basic Elements of Semiconductor Diode Lasers 1.3. Optical Gain and Threshold Condition 1.4. Edge- and Surface-Emitting Lasers 1.5. Lateral Confinement 1.6. Quantum-Well Structures 2. Fabrication Technology ._ 3. Optical Waveguides and Resonators 3.1. Effective Refractive Index 3.2. Normalized Propagation Diagrams 3.3. Optical Near- and Far-Field Patterns 3.4. Fabry-Perot Resonator 3.5. Diode Laser Spectrum 3.6. Mirror Coatings 4. Rate Equations and High-Power Operation 4.1. Rate Equations for Electronic Carriers and Photons 4.2. Electrical and Optical Characteristics of Power Diode Lasers . . . . 4.3. Design Considerations for High-Power Operation List of Symbols List of Constants Abbreviations for Indices References 1 1 1 8 10 13 15 18 20 24 24 26 28 31 33 34 37 37 41 46 50 51 51 52 X Contents Dynamics of High-Power Diode Lasers Edeltraud Gehrig and Ortwin Hess 55 1. Microscopic Spatio-Temporal Properties of Diode Lasers 1.1. Role of Microscopic Spatio-Temporal Properties in Macroscopic Laser Characteristics 1.2. Optical-Field Dynamics 1.3. Physics of the Active Semiconductor Medium 2. Spatio-Temporal Dynamics of High-Power Diode Lasers 2.1. Optical Injection 2.2. Influence of Laser Geometry and Facet Reflectivities 2.3. Dynamics of Optical Emission Characteristics 2.4. Spatial and Spectral Carrier Dynamics 2.5. Spatial and Spectral Refractive-Index and Gain Dynamics 3. Conclusion List of Symbols References 56 57 59 63 67 67 68 71 73 76 78 79 80 Epitaxy of High-Power Diode-Laser Structures Markus Weyers, Arnab Bhattacharya, Frank Bugge and Arne Knauer ... 83 1. Growth Methods 1.1. Molecular-Beam Epitaxy and Its Variants 1.2. Metalorganic Vapor-Phase Epitaxy 1.3. Comparison of MBE and MOVPE 2. Materials for High-Power Diode Lasers 2.1. GaAs and AlGaAs 2.2. GalnP and AlGalnP 2.3. GalnAsP on GaAs 2.4. InP. GalnAs(P) and AlGalnAs 3. Doping 3.1. N-Type Doping 3.2. P-Type Doping 4. Heterostructures 5. Strained Quantum Wells 5.1. Pseudomorphic Growth and Strain Relaxation 5.2. Strain Compensation 6. Device Results List of Acronyms References 86 87 91 94 96 96 98 101 102 103 103 103 106 107 107 109 110 113 114 Contents XI GaAs Substrates for High-Power Diode Lasers Georg Miiller, Patrick Berwian. Eberhard Buhrig and Berndt Weinert 1. Selection of the Growth Method 1.1. Important Features of GaAs Crystal-Growth Methods 1.2. Liquid-Encapsulated Czochralski (LEC) and Vapor-Controlled Czochralski (VCZ) Techniques 1.3. Thermal Stress and Dislocation Density 1.4. Methods of Directional Solidification: Gradient Freeze and Bridgman Variants 2. Physico-Chemical Features of the VGF Technology for the Growth of Si-Doped Low-EPD GaAs Single Crystals 2.1. Discussion of VGF Variants 2.2. Important Chemical Reactions in the VGF Growth of Si-Doped GaAs 2.3. VGF Furnace Concepts 2.4. Preparation of Starting Materials and Procedure of VGF Growth 3. Numerical Modeling for VGF-Process Optimization 3.1. Principles and Strategy of the Numerical Modeling 3.2. Optimization of VGF-Growth Equipment 3.3. Optimization of Growth Runs by Inverse Modeling 4. Crystal and Wafer Properties 4.1. Watering 4.2. Electrical Characterization and Silicon Doping 4.3. Optical Characterization by Infrared and Photoluminescence Mapping 4.4. Residual Dislocations r 5. Conclusion List of Symbols List of Acronyms References 121 122 122 124 124 126 129 129 132 139 140 141 142 146 146 154 156 156 156 158 166 167 168 169 High-Power Broad-Area Diode Lasers and Laser Bars Gotz Erbert, Arthur BarwolfL Jiirgen Sebastian and Jens Tomm 173 1. Epitaxial Waveguide Structures for High-Power Diode Lasers l.-l.-The Large Optical Cavity (LOC) Concept 2. Technology for Broad-Area Diode Lasers and Laser Bars 2.1. Processing of Contact Windows 2.2. Processing of Mesa Structures 2.3. Metallization 2.4. Laser-Bar Preparation 2.5. Facet Coating 175 175 184 185 187 190 192 194 XII Contents 3. Behavior of High-Power CW Diode Lasers 3.1. Influence of Heat on Laser Performance 3.2. Simulation of Temperature Distribution 3.3. Recent Results List of Symbols References 199 199 201 213 216 218 Properties and Frequency Conversion of High-Brightness Diode-Laser Systems Klaus-Jochen Boiler, Bernard Beier and Richard Wallenstein 225 1. Beam Quality 1.1. The Diffraction Parameter M2 1.2. Measurement of the Wavefront 2. Single-Stripe Diode Lasers 3. High-Power Diode Lasers 4. Diode Amplifiers 5. AlGaAs Diode-MOPA Systems 6. Diode-MOPA Systems Based on InGaAs 7. Nonlinear Frequency Conversion with High-Brightness Diode-MOPA Systems 7.1. Second-Harmonic Generation 7.2. Diode-Pumped Optical Parametric Oscillators 8. Summary List of Symbols and Abbreviations References 228 230 232 235 238 239 241 245 249 249 253 256 257 259 Tapered High-Power, High-Brightness Diode Lasers: Design and Performance Michael Mikulla 265 1. Introduction 2. Theoretical Background 3. BPM Simulations 4. Epitaxial Layer Structures ...: 4.1. Comparison of LMG and LOC Structures 5. Broad-Area Diode Lasers with LMG Layer Structures 6. Fabrication of Tapered Devices 7. Experimental Results 7.1. Tapered Laser Oscillators 7.2. Tapered Laser Amplifiers 7.3. Tunable High-Brightness Diode-Laser Systems 7.4. Tapered Diode-Laser Arrays 8. Manufacturability 266 267 269 270 271 272 273 274 274 276 279 282 284 Contents 9. Conclusion List of Symbols References XIII 285 287 287 Cooling and Packaging of High-Power Diode Lasers Peter Loosen 289 1. Basic Properties of Micro-Channel Coolers for High-Power Diode Lasers 291 2. Manufacturing and Flow Dynamics of Cu Micro-Channel Coolers ... 295 3. Packaging of Diode-Laser Bars 297 List of Symbols 300 References 301 High-Power Diode Lasers for Direct Applications Uwe Brauch, Peter Loosen and Hans Opower 303 1. Introduction (Hans Opower) 303 2. Incoherent Beam Combining (Peter Loosen) 309 2.1. Properties of High-Power Diode Lasers for Direct Applications . 311 2.2. Beam Quality of Incoherently Combined Beams 313 2.3. Technical Devices 316 2.4. Beam Collimation 320 2.5. Aperture Filling and Stacking Accuracy 325 2.6. Applications 328 2.7. Discussion and Perspectives .• 331 3. Coherent Beam Combining (Uwe Brauch) 331 3.1. Coherence Properties of Semiconductor Diode Lasers 334 3.2. Combining of Diffraction-Limited Beams 336 3.3. Phase Coupling and Beam Combining of Single-Longitudinal-Mode Lasers 345 3.4. Prospects and Limitations of Coherent Beam Combining 360 List of Symbols 362 References 364 New Concepts for Diode-Pumped Solid-State Lasers Andreas Tunnermann, Holger Zellmer, Wolfram Schone, Adolf Giesen and Karsten Contag 369 1. Fundamental Concepts of Diode-Pumped Solid-State Lasers 1.1. Thermal Considerations 2. Fiber Lasers 2.1. Laser-Active Waveguides 2.2. Double-Clad Fiber Lasers 2.3. Pump-Radiation Absorption in Double-Clad Fibers 369 371 374 375 377 378 XIV Contents 2.4. High-Power Laser Operation 2.5. Fiber-Laser Emission in the Visible Spectral Region 3. Thin-Disk Laser 3.1. Design Considerations 3.2. Numerical Simulation of the Thin-Disk Laser 3.3. Results and Discussion 3.4. Conclusion List of Symbols References 381 384 386 387 388 393 403 404 405 Index 409