medal of honor underground
Transcription
medal of honor underground
2 NASTT/GLSLA - 2009 Trenchless Report BUYOUR MUSCLE, CC-01X4-BLOCK BE 11 3/4" WH WH 15 5/8" BE WH WH 5" BE WH WH WH BE GET THE 8" 10 1/4" BRAINS FREE. FOR AT MELFRED BORZALL, OUR EXPERIENCE IS BEHIND YOU EVERY STEP OF THE WAY. Looking to increase your HDD I.Q.? At Melfred Borzall, we may be known for inspiring fear into even the toughest ground conditions. But our reputation all comes down to our years of engineering know-how and on-the-job experience. Sure, we offer the most quality reamers, bits and rods in the industry. But perhaps more importantly, every one of our tools is backed by our patented customer service. So when you work with Melfred Borzall, you can rest assured knowing you can get the job done fast, easy and with our team of pros behind you every step of the way. For more information, give us a call at 1-800-558-7500 (outside the U.S. 1-805-614-4344) or visit www.melfredborzall.com. And let us flex our biggest muscles for you. Our brains. ©2009 Melfred Borzall, Inc. 2712 Airpark Drive, Santa Maria, CA 93455 Nothing bores like a Borzall 4 NASTT/GLSLA - 2009 Trenchless Report Table of Contents north american society for trenchless technology Great Lakes, St. Lawrence & Atlantic (GLSLA) Chapter Chapitre des Grands Lacs, du Saint-Laurent et de l’Atlantique 2009 TrenChless reporT Word From the Chair/ Mot de Président du GLSLA – Isabel Tardif 6 Trenchless Triumphs in Toronto – Mike Willmets 8 From the NASTT Chairman/Mot du Président de NASTT – Chris Brahler 9 NASTT/GLSLA Board of Directors 10 NASTT/GLSLA Calendar of Events 14 Pure Technologies Takes a Closer Look – Michael Stimpson 16 2009 International No-Dig Show A Record- Breaking Success – Angela Ghosh 19 City of Hamilton and GLSLA Host Japan Society of Trenchless Technology – Kevin Bainbridge 21 NASTT’s No-Dig Show Heads to Chicago in 2010 – Mark Hallett 22 The Importance of Numbers – Piero Salvo 25 Calculate the Benefits of Going Trenchless – Michael Stimpson 27 Balfour Sewer Rehabilitation – Alternative Project Delivery Process – Ashley Rammeloo, Kim Lewis, and Jim Breschuk 29 Triomphe de la technologie sans tranchée à Toronto – Mike Willmets 32 Pure jette un coup d’oeil attentif – Michael Stimpson 33 La foire No-Dig met le cap sur Chicago en 2010 – Mark Hallett 36 Le CERIU présent à l’International No-Dig 2009 de Toronto – Isabel Tardif 38 L’importance des chiffres – Piero Salvo 39 Nouvelles fiches techniques en infrastructures souterraines – Isabel Tardif 41 Le revêtement structurel de conduites maîtresses dans la ville d’Ottawa retourne à ses racines – Todd Penfound & George Blow 42 Calculez les bénéfices de la technologie sans tranchée – Michael Stimpson 45 Lancement d’un Outil interactif d’aide à la décision pour le renouvellement des infrastructures souterraines – Isabel Tardif 47 Using New Technology to Locate Large Diameter Sewers and Avert Potential Disaster – David Crowder, Gerald Bauer, & John Scaife 49 Hamilton’s Three-Year CIPP Water Rehabilitation Program – Michael Zantingh 53 Auger Boring Through Hard Rock: Overcoming the Challenge – Rob Foster 57 Structural Lining of Watermains in The City of Ottawa Returns to its Roots – Todd Penfound & George Blow 60 Providing Waterworks Utilities with What They Want – Richard Botteicher 63 Swagelining: HDPE Rehabilitation System for Large Diameter Pressure Pipelines – Todd Grafenauer 66 Published by: Managing Partner and Editor Paddy o’toole 204.255.6524 [email protected] COMMUNICATIONS INC. Unit 1 – 73 fontaine crescent Winnipeg, manitoba canada r2J 2h7 © Copyright 2009 PTR Communications Inc. All rights reserved. The contents of this publication may not be reproduced by any means, in whole or in part, without the express written permission of the Publisher. Printed in Canada 10/09 Advertising Sales andrew Pattison 204.275.6946 [email protected] Layout & Design lunch Pail Productions 204.237.6611 [email protected] While every effort has been made to ensure the accuracy of the information contained herein and the reliability of the sources, the Publisher in no way guarantees or warrants the information herein, and is not responsible for errors, omissions, or statements made by advertisers. Opinions or recommendations made by contributors or advertisers are not necessarily those of PTR Communications Inc., its officers or employees. Publications mail agreement #41901514 Return undeliverable Canadian addresses to: PTR Communications Inc. Unit 1 - 73 Fontaine Cres., Winnipeg, Manitoba Canada R2J 2H7 Email: [email protected] NASTT/GLSLA - 2009 Trenchless Report 5 Word from the Chair Isabel Tardif Since the last issue, the Great Lakes, St-Lawrence, and Atlantic Chapter has been very involved in helping to promote trenchless technologies! As you may have noticed, we now have a new magazine title known as the “Trenchless Report” and a new Chapter logo to symbolize our large Chapter. Also, we now have a new website for all of our members at the following address: www.glsla.ca. Elections were held this past summer, and it is with great pleasure that I can address you as the new GLSLA Chair. I would like to per- sonally congratulate the new GLSLA Board Members, which are introduced to you on page 10. I can assure you that the board members that you have elected are dynamic and proactive volunteers, willing to take new challenges and to promote trenchless technologies. We would like to thank the trenchless community located in our Chapter who stepped up to help make the International No-Dig Show 2009 in Toronto such a success last March. The success of the show was a reflection of your attendance and participation at the conferences, exhibit hall and training courses. Special thanks go to the GLSLA Board Members who continue to volunteer to give their time, effort, and involvement at the Chapter booth during the show. I would also like to emphasize the participation of the GLSLA Students Chapters, who attended in large numbers, and with the hope that they can continue their interest and become our next generation of trenchless professionals. I would like to thank the City of Hamilton for taking the time to host a workshop and jobsite tour for the Japanese Society for Trenchless Technology (JSTT). The event was quite successful. To find out more please read the article on page 21. Other upcoming events that we are looking forward to seeing you are: 1) INFRA 2009 – November 16-18, 2009 in Mont-Tremblant, Quebec 2) Atlantic Canada ACWWA – October 18-20, 2009 in Halifax, Nova-Scotia 3) No-Dig Show 2010 – May 2-7, 2010 in Chicago, Illinois 4) CATT 2010 Trenchless Road Show – June 9-10, 2010 in Mississauga, Ontario We welcome you to get involved, participate and become members of the GLSLA Chapter! Mot de président du GlslA Depuis la dernière parution, le chapitre des Grands-Lacs, du SaintLaurent et de l’Atlantique (GLSLA) a travaillé sans relâche pour faire la promotion des techniques sans tranchée. Vous avez pu remarquer que le magazine s’intitule maintenant Trenchless Report et que nous avons un nouveau logo pour identifier le chapitre. Nous avons conçu un nouveau site Web et nous vous invitons à le consulter à l’adresse suivante : www. glsla.ca. Des élections ont eu lieu cet été et il me fait plaisir de m’adresser à vous à titre de présidente du GLSLA. J’en profite pour féliciter personnellement tous les nouveaux membres du comité qui vous seront présentés dans le page 10. Je peux vous assurer que ces membres que vous avez élus sont des bénévoles dynamiques et proactifs prêts à aborder les nouveaux défis et à faire la promotion des techniques sans 6 tranchées. J’aimerais remercier les membres de la communauté sans tranchées située dans notre chapitre qui, grâce à leur participation, ont fait de l’International No-Dig Show 2009 à Toronto en mars dernier un véritable succès qui s’est reflété par votre présence et votre participation tant aux conférences, expositions, qu’aux cours de formation. Je tiens à souligner particulièrement l’implication des membres du comité du GLSLA qui ont assuré une permanence au kiosque du chapitre pendant la conférence. J’aimerais aussi noter la présence des chapitres étudiants du GLSLA qui ont participé en grand nombre. Je formule le souhait que cet intérêt soit toujours présent, car ils sont notre prochaine génération de professionnels en technique sans tranchées. Pour l’intérêt de nos membres francophones, nous annonçons avec plaisir la parution d’une nou- NASTT/GLSLA - 2009 Trenchless Report velle section en français, des pages 32 à 47 inclusivement. J’aimerais aussi remercier la ville de Hamilton qui a été l’hôte d’un atelier et d’une visite de chantier pour la délégation japonaise Japanese Society for Trenchless Technology. L’événement fut un succès et pour en savoir plus, consultez l’article à la page 21. Voici d’autres événements auxquels nous vous invitons à participer : 1) INFRA 2009 – 16 au18 novembre 2009 à Mont-Tremblant, Québec 2) Atlantic Canada ACWWA – 18 au 20 octobre 2009 à Halifax, Nouvelle-Écosse 3) No-Dig Show 2010 – 2 au 7 mai 2010 à Chicago, Illinois 4) CATT 2010 Trenchless Road Show – 9 et 10 juin 2010 à Mississauga, Ontario Nous vous encourageons à vous impliquer, à participer et à devenir membre du GLSLA. Trenchless Triumphs in Toronto Mike Willmets, Executive Director, NASTT If you’re committed to making smart decisions for underground infrastructure, it’s a pretty good bet that you attended the 2009 International No-Dig Show in Toronto, Canada from March 29th to April 3rd. Over 1,900 people from 43 countries certainly thought it was the right thing to do and it looks like the No-Dig Show really does the right thing by “helping you make smart decisions even smarter”! This was the first International No-Dig ever to be presented in Canada, and NASTT’s fourth in conjunction with our co-hosts, the International Society for Trenchless Technology. To the credit of the 2009 Program Committee, 140 peer-reviewed technical papers were presented, the most ever for a NoDig Show. Our industry exhibitors were in full force too as the Sheraton Centre exhibit halls were completely sold-out representing 124 companies, many of whom were using this event to launch new trenchless products. Many thanks to our premium level sponsors and exhibitors for their welcomed support and generosity. For those with an appetite for trenchless training, all six of the NASTT Good Practices courses were presented for the first time under one roof and very well attended. Special thanks to our excellent volunteer instructors! Undoubtedly, the Toronto show was a milestone event for NASTT, not only because we broke all our attendance and sponsorship records but, because this occurred during a very challenging economic period. We have all developed a new attitude towards thriftiness, and for the 8 NASTT No-Dig Show to receive the Trenchless industry’s stamp of approval is perhaps recognition of top notch quality and the best value for your ticket price. Especially commendable was the record setting contributions at the 8th Annual Educational Fund Auction. Helping our students is the best investment we could ever make. Thank you for your generosity. I am also proud to point out that for the first time, Canadian attendance outweighed all others and undoubtedly was a major factor in our success. Of course, it is volunteerism that drives NASTT and the No-Dig Show. Without the enormous commitment of our membership, much of what is presented at our annual event would not be possible. The contribution of the Great Lakes, St. Lawrence and Atlantic Chapter deserves special recognition and praise, as it does at every No-Dig NASTT/GLSLA - 2009 Trenchless Report Show. Collectively, your Chapter is an impressive and inspirational group that have certainly become a strong voice in our industry. Thank you for allowing your talents to be tapped and for your enthusiastic support of our not-for-profit society. On behalf of all members of NASTT, I wish to extend sincere congratulations to your newly elected Board and to wish them the best of success. When NASTT was formed in 1990, it was only a pipe dream to have Canadian representation from coast to coast. The Great Lakes, St. Lawrence and Atlantic Chapter is a big part of that accomplishment and I hope to see you at our 20th Anniversary celebration at the 2010 No-Dig in Chicago, Illinois. Best regards, Mike Willmets Executive Director, NASTT From the nAsTT Chairman Chris Brahler, Chairman, NASTT I also want to highlight a few upcoming events: The first part of my term as NASTT Chair has been exciting and energizing! It has been an honor to represent an association and an industry that in so many ways epitomizes the true spirit of innovation, ingenuity, and good old-fashioned hard work. That hard work begins with NASTT Regional Chapters like the GLSLA. Your commitment and dedication is so important to the success of the trenchless industry as a whole that it cannot be overstated. You make it happen. Through educational programs, training events and, of course, the projects in the field, you advance the cause and elevate the industry. • INFRA Conference, November 1618, 2009 Fairmont Tremblant, Tremblant, PQ • ACWWA (Atlantic Canada Water Works Association), Oct 1819,2009, Halifax, NS • 2010 CATT Trenchless Road Show, June 8-10, 2010, Mississauga, Ontario In addition, of course, the upcoming 2010 No-Dig in Chicago, May 2-7, 2010 Congratulations to the GLSLA for all of the great work being done, and a special thank you for all of the hard work and contributions made by the GLSLA chapter during the 2009 No-Dig Show in Toronto this past April. Great job everyone! Chris Brahler Chairman, NASTT TT Technologies, Inc. BoArD oF DIreCTors Isabel Tardif CERIU, Quebec Chair, Student Chapters Committee Kevin Bainbridge City of Hamilton, Ontario Vice Chair Derek Potvin Robinson Consultants Inc., Ontario Treasurer Gerald Bauer R.V. Anderson Associates Limited, Ontario Secretary Frank Badinski York Region, Ontario Past Vice Chair, Training Committee Mot du président de nAsTT La première partie de mon mandat comme président de NASTT a été mouvementée et motivante. C’est un honneur de représenter une association et une industrie qui, de maintes façons, incarne l’esprit d’innovation, d’ingéniosité et le bon vieux sens du travail. Ce travail commence avec les chapîtres régionaux de NASTT comme celui du GLSLA. Votre engagement et votre dévouement est si important au succès de l’ensemble de l’industrie sans tranchée qu’on ne peut trop l’affirmer. Vous en êtes responsables. Grâce aux programmes d’éducation, aux activités de formation et aux projets sur le terrain vous avancez la cause et faîtes connaître l’industrie. Je voudrais également signaler quelques événements à venir : • La conférence INFRA, du 16-18 novembre 2009, Fairmont Tremblant, Tremblant, P.Q. • ACWWA (Atlantic Canada Water Works Association), du 18-19 octobre 2009, à Halifax, N.-É. • 2010 CATT Trenchless Road Show, du 8-10 juin 2010, à Mississauga, Ontario. Félicitations au chapître GLSLA pour l’excellent travail en cours et plus particulièrement pour sa contribution importante lors de la foire No-Dig 2009 à Toronto en avril. Mark Bajor Region of Halton, Ontario GLSLA Magazine Sandra Gelly Genivar, Quebec Website Committee Jamie Hannam Halifax RWC, Nova Scotia Atlantic Committee Erika Waite City of Hamilton, Ontario Director Ryan Creamer Chris Brahler Chairman, NASTT TT Technologies, Inc. Region of Niagara, Ontario Director NASTT/GLSLA - 2009 Trenchless Report 9 nAsTT/GlslA Board of Directors nAsTT/GlslA Board of Directors Isabel Tardif, Chair, student Chapters Committee, CerIU, Quebec Isabel Tardif holds a Bachelors Degree in Civil Engineering from McGill University and a Law Degree from the Université du Québec à Montréal. She also earned a Masters in Project Management from the Université du Québec en Outaouais. Mrs. Tardif is Director of Underground Infrastructures for the Centre for Expertise and Research on Infrastructure in Urban Areas (CERIU). Prior to CERIU, she has held the position of Operations Manager – Potable Water and Sewer Kevin Bainbridge, Kevin is a Civil Engineering Technologist having graduated in 1995 from Mohawk College in Hamilton and has worked in the municipal sewer and water industry for the past 12 years. He is a professional member of the Ontario Association of Certified Engineering Technologists and Technicians (OACETT). Kevin is currently the Senior Project Manager of Subsurface Infrastructure for the City of Hamilton’s Infrastructure Asset Management group. He is directly responsible for the management of the City’s annual Water Distribution and Wastewater Collection Capital Improvement Program, development and research in trenchless rehabilitation and Networks for the City of Aylmer and as well as Coordinator – Potable Water and Sewer Rehabilitation for the Engineering Department for the City of Gatineau. She has been involved in several INFRAGuide Committees, the North American Society for Trenchless Technologies (NASTT) and with the CERIU for many years in regards potable water and sewer underground infrastructures. Mrs. Tardif had moderated and has given conferences in Africa and in North America on different topics pertaining to potable water, sewer, and trenchless technologies. She currently gives courses and lectures on trenchless technologies to engineers, technicians, as well as university and college students. Vice Chair, City of hamilton, ontario the life cycle management of the systems. In 2002 he implemented the City’s first comprehensive programs in sewer and watermain rehabilitation, which now makes up more than 50% of the total capital improvement program and more than 35,000 meters (115,000 ft) of pipe annually. He has authored and co-authored a number of papers on various aspects of Infrastructure Management and Trenchless Technologies and has spoken at various conferences and seminars on the subject, including NASTT No-Dig, AWWA, CATT, WEAO, ASCE, and Trenchless Road Show. With the growing infrastructure deficit across North America, Kevin is a strong believer that trenchless rehabilitation is a significant key to the sustainable management of underground infrastructure. www.glsla.ca 10 NASTT/GLSLA - 2009 Trenchless Report nAsTT/GlslA Board of Directors Derek potvin, Treasurer, robinson Consultants Inc., ontario Derek is a project director with the multidisciplinary engineering firm, Robinson Consultants Inc. He obtained his Bachelors of Applied Sciences with a minor in business administration at the University of Ottawa. Derek has been providing trenchless technology solutions to his clients for over Gerald Bauer, 20 years, including a trenchless project that won a Canadian Consulting Engineering Award. Derek is actively involved with the No Dig Conference, where he coauthored a paper that won an “Outstanding Paper Award”. He is also a presenter of the “Trenchless 101” course. Derek has been involved as an organizer and presenter of NASTT Short Courses and regional trenchless conferences such as the Trenchless Road Show. secretary, r.V. Anderson Associates limited, ontario Gerald Bauer, P.Eng.: is an Associate Director and the Ottawa Office Manager of R.V. Anderson Associates Limited with over 26 years of experience in the fields of municipal and environmental engineering. Over the past 19 years, he has focused on infrastructure rehabilitation, completing numerous infrastructure needs studies in Ontario. He is recognized as a Canadian expert on trenchless technologies for rehabilitation and construction of sewers and water mains and has presented papers on trenchless projects across North America for NASTT/GLSLA Chapter, NASTT National Conference and CATT. In addition, he was one of a handful of individuals from around the world invited to present Canada’s experience on Trenchless Technology in front of a symposium for the Indian National Government and Provincial representatives in New Delhi in 2005 (200 delegates attended). He has completed numerous projects requiring the assessment of trenchless rehabilitation for deteriorating sewer and water infrastructure (many for large, deep and complex infrastructure) involving current industry trenchless technologies, specifically slip-lining, cured-in-place liners, fold and form liners, spot repairs, grouting, segmental liners, spiral wound liners, zoom camera, CCTV cameras, chemical grouting, epoxy linings, pipe bursting, horizontal directional drilling, tunneling, jack and bore, pipe jacking, rock boring, confined space entry, sonde and ground-penetrating radar. He is familiar with the majority of available trenchless technologies used, having assessed them or oversaw their installation on projects. Many of the projects have required condition assessments, field investigations, modeling, assessment of rehabilitation options, feasibility studies, preliminary design, detail design, preparation of contract documents, contract administration and inspection. Mr. Bauer is an active member of NASTT and has presented several technical papers and published sev- eral articles on projects using trenchless technology. He has provided advisory services for three Value Engineering reviews of large infrastructure rehabilitation projects. In addition, he participated in the development of Guidelines for Condition Assessment and Rehabilitation of Large Sewers (published by the NRC), also was a member of Working Group for the Best Practice report on the Assessment and Evaluation of Municipal Sewer Systems (published by the National Guide to Sustainable Municipal Infrastructure). NASTT/GLSLA - 2009 Trenchless Report 11 nAsTT/GlslA Board of Directors Frank Badinski, past Vice Chair, Training Committee, York region, ontario Frank has worked with the Region of York Environmental Services Department for the past 20 years and now holds the position of Asset Management Coordinator. This position contends with all aspects of the Region’s water and wastewater infrastructure. Joined the North American Association of Pipeline Inspectors (NAAPI) in 1995 and presently sits as the Association’s Vice President and instructs the Introduction to Data and Asset Management course. This association has closed its doors as of September, 2008 but is still working to finalize all of its activities. Joined the NASTT Great Lakes St. Lawrence and Atlantic Chapter board of directors in 2000 and still sits on the board as the chair of the Education Committee. Joined the Centre for Advancement of Trenchless Technology (CATT) board of directors in 2003 as the NAAPI chair. Stepped down in 2007 but is still involved in various activities with the association. He has been on the epCIP Committee developing underground infrastructure courses. Also sits as vice-chair on a newly formed sub-committee called Sewer Pipe Industry Management Association (SPIMA). Jamie hannam, Atlantic Committee, halifax rWC, nova scotia Jamie is the Manager of Engineering & Information Services for Halifax Water, a position he obtained in 2007. Prior to this he was the Chief Engineer with the Halifax Regional Water Commission from 1994 to 2007. A graduate of Acadia (B.Sc. 1983), TUNS (B.Eng. 1985) and Dalhousie (MBA 1990), he spent the earlier years of his career in Municipal Government in both Halifax and Dartmouth working on a variety of engi- Mark Bajor, GlslA Magazine, region of halton, ontario Mark is a Design Supervisor with the Regional Municipality of Halton with over 10 years experience in the water and wastewater industry. He has been responsible for the research and implementation of several Trenchless Technology projects utilizing CIPP, Pipe Bursting and Horizontal Directional Drilling. Mark has positoned Halton as a leader and innovator in the Trenchless Technology market. From cement mortar lining to micro-tunneling, Halton has had positive results with many trenchless technology applications. As a result, it allows further investigation and investment in the trenchless technology industry. He is a member of Ontario Association of Certified Engineering Technicians and Technologists 12 neering tasks. In his role as Manager of Engineering & IS he is responsible for water and wastewater infrastructure master planning, asset management, and capital project delivery with an annual capital budget of $30M. Halifax Water, a water and wastewater utility, serving 350,000, with pipes as old as 1856, has utilized trenchless technologies and NASTT resources as key components of our system rehabilitation program for the past 15 years. NASTT/GLSLA - 2009 Trenchless Report (OACETT), and North American Society for Trenchless Technology (NASTT) and sits on the Executive Committee for West Central Branch of the OPWA. TRENCHLESS DESIGN ENGINEERING www.trenchlessdesign.com ENGINEERING FOR TRENCHLESS TECHNOLOGY Tel 905-468-8129 Fax 905-468-9462 Trenchless Design Engineering Ltd. 12 - 111 Fourth Avenue, B-345 St. Catharines, ON Canada L2S 3P5 nAsTT/GlslA Board of Directors sandra Gelly, Website Committee, Genivar, Quebec Sandra received her B.Eng in Civil Engineering from McGill University in 2003. In May 2005, she joined WSA Trenchless Consultants as a project engineer to promote WSA's trenchless technology projects in the Montreal area. She is regularly involved in the site supervision and management of trenchless technology and sewer inspection projects in Quebec and Ontario. Since April 2006 she has been working on the City of Montreal’s intervention plan. Within this team she has helped develop sewer inspection databases, analyzed sewer management tools and identified sewer defects obtained from TV inspections, prepared and managed sewer inspection and water erika Waite, rehabilitation contracts as well as participated in the different engineering committees involved in the project’s development. Sandra has participated in a number of projects and activities for the GLSLA including NASTT Student Chapters in the City of Montreal and the preparation of GLSLA activities in Quebec and Ontario. She is an active member of the Centre for Expertise and Research on Infrastructures in Urban Areas (CERIU) in Montreal. Her training includes sewer defect coding using both NAAPI and NASSCO for which she is a certified user and trainer, respectively. Her past professional experience include nearly two years as Assistant Technological Councillor in Underground Infrastructures and Public Utilities at CERIU. Director, City of hamilton, ontario Erika Waite is a Civil Engineering Technologist having graduated from Mohawk College in Hamilton, Ontario in 2003. She is a Project Manager of Subsurface Infrastructure for the City of Hamilton’s Infrastructure Asset Management team. Erika has authored, co-authored and presented papers for NASTT No-Dig and CATT. She is responsible for the management of various sewer and water capital improvement projects as well as capital infrastructure coordination projects. ryan Creamer, Director, region of niagara, ontario Photo Not Available Ryan Creamer is a Water and Wastewater Capital Works Project Manager for the Niagara Region, he has been in the Water & Wastewater industry since 2004. Ryan obtained his Bachelor of Civil Engineering degree from Lakehead University in 1999. His first involvement in the water and wastewater industry was for Peel Region in 2000, as a Jr. Construction Inspector. In 2007, Ryan was the Project Manager of the first CIPP Lining project for Niagara Region. He is looking forward to completing additional trenchless projects within the Region. This is Ryan’s first year on the Board. He is ready to expand his knowledge of trenchless rehabilitation. He is also hoping to develop new trenchless (relationships) within and for the Niagara Region. NASTT/GLSLA - 2009 Trenchless Report 13 nAsTT/GlslA Calendar of events nAsTT Training Courses, Conferences & Chapter events hdd good Practices gUidelines coUrse Thursday, November 5, 2009 - Friday, November 6, 2009 York Region Waste Management Centre - York Region, Ontario Canada nastt laterals good Practices coUrse Wednesday, January 20, 2010 Tampa Convention Center - Tampa, FL Sponsored by the Great Lakes, St. Lawrence & Atlantic Chapter of NASTT. Course Instructors are Dr. Samuel T. Ariaratnam and Dr. David Bennett. Earn CEUs/PDHs for your participation! contact info: Web site: http://www.nastt.org Frank Badinski Phone: 905-955-0959 • Email: [email protected] Sponsored by NASTT in conjunction with UCT. Provides techniques for maintaining, rehabilitating and replacing sewer laterals and connections, using case studies, field data and surveys results. Course instructors are Jason Lueke, Ph.D., P.Eng. and Ray Sterling, Ph.D., P.E. contact info: Web site: http://www.uctonline.com Angela Ghosh Phone: 703-217-1382 • Email: [email protected] nastt neW installation methods good Practices coUrse Tuesday, November 24, 2009, Calgary, Alberta hdd good Practices gUidelines coUrse Wednesday, March 3, 2010 San Diego Convention Center - San Diego, CA Sponsored in conjunction with the 2009 NASTT. Northwest Trenchless Conference. Course instructors are Glenn Boyce and Craig Camp. Topics covered: auger boring, pipe ramming, pipe jacking, and the pilot tube methods. contact info: Web site: http://www.nastt-nw.com Angela Ghosh Phone: 703-217-1382 • Email: [email protected] Sponsored by NASTT in conjunction with the CGA Excavation & Safety Conference & Expo. Course Instructors are Dr. Samuel T. Ariaratnam and Dr. David Bennett. Earn CEUs/PDHs for your participation! contact info: Web site: http://www.excavationsafetyonline.com/cga/index.php Angela Ghosh Phone: 703-217-1382 • Email: [email protected] 2009 nastt northWest trenchless conference Wednesday, November 25, 2009, Calgary, Alberta 2010 nastt no-dig shoW Sunday, May 2, 2010 - Friday, May 7, 2010 The Northwest Chapter of the North American Society for Trenchless Technology is hosting the 2009 NASTT Northwest Trenchless Conference in Calgary on November 24 and 25, 2009. This conference includes a one day short course and one day of technical presentations focused on all aspects of trenchless construction. The Northwest Chapter Project of the Year will be also awarded at the conference. Please visit the web site at www.nastt-nw.com for abstract and Project of the Year submission requirements. contact info: Web site: http://www.nastt-nw.com Duane Strayer Email: [email protected] Renaissance Schaumburg Hotel - Chicago (Renaissance), Illinois Sponsored by the North American Society for Trenchless Technology (NASTT). contact info: Web site: http://www.nodigshow.com Benjamin Media, Inc. (Conference Management) Phone: 330-467-7588 • Email: [email protected] nastt cUred-in-Place-PiPe good Practices coUrse Wednesday, January 20, 2010 Tampa Convention Center - Tampa, FL Sponsored by NASTT in conjunction with UCT. In-depth overview of wastewater mainline and lateral pipe rehab using CIPP. CEUs awarded. Complimentary UCT full conference pass included. Course instructors are Mark Knight, Ph.D., P.E. and Kaleel Rahaim. contact info: Web site: http://www.uctonline.com Angela Ghosh Phone: 703-217-1382 • Email: [email protected] 14 NASTT/GLSLA - 2009 Trenchless Report toronto trenchless road shoW June 9-10, 2010 Mississauga Grand Banquet & Convention Centre Ontario, Canada Sponsored by the Centre for Advancement of Trenchless Technologies (CATT). Educational Classroom Sessions. Interactive Exhibit Hall. Networking Opportunities. Live Technical Sessions. contact info: Visit www.catt.ca or www.trenchlessonline.com/trs QUESTIONS ABOUT TRENCHLESS? We Have Answers. NORTH AMERICAN SOCIETY FOR TRENCHLESS TECHNOLOGY TM Get Connected to the Trenchless Industry Join Today NASTT is your link to thousands of local, national and international trenchless professionals and industry leaders. Whether your business is engineering, public works and utilities, underground construction, or equipment manufacturing, NASTT is the definitive resource for the trenchless industry and the application of trenchless methods for the public benefit. From educational resources to training tools and more, NASTT members have access to a wealth of valuable information and networking opportunities. Education & Training NASTT provides top-notch, quality education and training programs for trenchless professionals. Currently, NASTT offers six training courses covering Cured-in-Place-Pipe (CIPP), Horizontal Directional Drilling (HDD), pipe bursting, sewer lateral rehabilitation, an overview of trenchless technologies, and new installation methods such as auger boring, pipe jacking, pipe ramming, and the pilot tube method. Earn Continuing Education Units (CEUs) for your participation. Membership benefits include: • Members-only discounts • Complimentary access to online reference tools and publications • Subscriptions to industry trade magazines • Leadership opportunities • Involvement in your regional chapter • And much more! Our members often join for one reason, only to discover the value of many others. Joining is easy. Visit our Web site at www.nastt.org or call 613-424-3036 (in Canada) or 703-217-1382 (in U.S.) for membership details. The Show! The annual No-Dig Show is the largest trenchless technology event in North TM America, offering an impressive collection of quality papers, an exhibition hall with more than 125 trenchless companies displaying their products and services, a series of specialized training courses, and many entertaining networking events and special awards. Mark your calendars for NASTT’s No-Dig Show, May 2-7, 2010, in Chicago (Schaumburg), Illinois! 1655 N. Ft. Meyer Drive, Suite 700 Arlington, VA 22209 Phone: 613-424-3036 (in Canada) or 703-217-1382 (in U.S.) Pure Technologies Takes a Closer Look Michael Stimpson Contributing Writer Pure Technologies Ltd. is an international technology and services company, with its corporate headquarters based in Calgary, Alberta. The company’s proprietary product portfolio includes SoundPrint, a continuous acoustic structural monitoring system for buildings, bridges and other structures; SoundPrint AFO, a fiber-optic distributed acoustic sensing system for monitoring and surveillance of pipelines; P-Wave, an electromagnetic condition assessment technology for Prestressed Concrete Cylinder Pipe; and SmartBall, a revolutionary tool to detect leaks and pockets of trapped gas in pressurized pipelines. The company has put its SoundPrint and P-Wave technology to work in Montreal since the city awarded it a pipeline inspection contract in 2006. Pure was contracted to inspect and monitor the city’s largediameter prestressed concrete water transmission mains. The contract itself marked a bit of a breakthrough for Pure, which until that point had seen the vast majority of its waterrelated revenues emanating from points outside Canada. Performed via a subcontract to Montreal’s Advitam Solutions (Canada), the work generated significant benefits to the city in its first year. SoundPrint acoustic monitoring and P-Wave electromagnetic technologies were employed to find areas of distress in the water transmission mains that needed either immediate attention or longer term monitoring. Subsequent repairs prevented major problems, perhaps even a catastrophe, from occurring. “Damage was found on the Pie Neuf Transmission main, a 72” diameter PCCP pipeline. This was a critical pipeline for the City of Montreal and could not be taken out of service since there wasn’t any other redundancy at the time,” Pure Technologies U.S. Inc. President Mark Holley explains. “The fiber optic cable was installed in the pipe using a parachute deployment system,” continues Holley. “It was then connected to a data acquisition unit where Pure monitored and recorded ongoing wire break activity. What was heard was a series of wire breaks over a period of three to six months. There were so many wire breaks that the city took a closer look at several individual pipes that showed advanced deterioration and implemented emergency repairs.” Cable carrying data to acquisition device 16 NASTT/GLSLA - 2009 Trenchless Report GLSA Today, another section of pipeline is being monitored with a SoundPrint AFO wet-deployed cable while the line remains in service. Pure continues to inspect Montreal’s PCCP pipelines. Another deployment of its robotic P-wave technology is Magazine_INFRA2009.pdf 1 14/09/09 2:26 PM scheduled for the second week of October 2009. Robotic inspection device C’est Pure Montreal needed an electromagnetic condition assessment inspection of their PCCP water transmission mains to determine a baseline of condition and a program for managing those vital assets. SoundPrint AFO was deployed to help the City of Montreal obtain the real-time deterioration (wire breaks) that could be happening in its PCCP water transmission system. As well, manned-entry P-wave inspections and robotic P-wave inspections of several kilometres of pipelines have also been carried out. SoundPrint AFO detected a number of wire breaks over a short period in 2007 sections of a 72-inch pre-stressed concrete water main. The city was advised, took the line out of service to take a closer look, found significant wire breaks, and undertook a repair program. It was able to put the main back into service in a few months without facing a catastrophic failure. The Montreal experience demonstrates that Pure Technologies services are wellproven and well-positioned to help clients manage their pipelines on a real-time basis. C Municipal Infrastructures: A vision for the future built on 15 years of experience Congress INFRA 2009 November 16 to 18 Fairmont Tremblant, Mont-Tremblant - Québec M Y CM MY CY CMY K Undergrounds Infrastructures Investigation Technique Development Underground Infrastructures Rehabilitation NASTT/GLSLA - 2009 Trenchless Report 17 Inspection reveals damage to pipe Acquisitions a Good Fit Pure Technologies Ltd. recently announced the acquisition of Jason Consultants Group. Commenting on this development, Jack Elliott, Pure’s President, said: “The acquisition of Jason Consultants Group is consistent with our previouslyannounced strategy of growing our specialist engineering services business to complement our technology and technical services activities. The acquisition of Openaka in 2006 helped us to grow our business significantly in the prestressed pipe sector. However, prestressed pipe accounts for only a small percentage of the total water and wastewater pipeline infrastructure in North America, and we expect that Jason will help us to access the broader market for inspection and assessment of pipelines constructed from ferrous and other materials. ”Jason is particularly strong in the wastewater sector, an area where Pure has had limited exposure but where we see tremendous opportunities,” continues Elliott. “Furthermore, we believe that 18 NASTT/GLSLA - 2009 Trenchless Report Jason’s international reputation and activities will help to generate opportunities for our inspection and monitoring technologies in overseas markets.” Specializing in underground infrastructure engineering and technology, Jason Consultants has offices in Europe and the United States, and is recognized as one of the top design firms in its sector. In addition, Pure also acquired the assets of Pipe Eye International, a robotic inspection services provider, in 2009. S The 2009 International No-Dig Show A RecordBreaking Success Angela Ghosh NASTT Assistant Executive Director. By any measure, the International No-Dig Show, March 27 – April 2, 2009, in Toronto was a success. The record-setting event brought together 1,900 attendees and 124 exhibiting companies from 43 countries around the world. The exhibition hall with more than 243 – 10x10 booths sold was the largest in No-Dig’s history and showcased products from around the world. There were 140 technical papers presented over five concurrent tracks. International speakers came from as far afield as Denmark, France, Germany, Italy, Japan, China, Poland, Netherlands and the United Kingdom. side of the Atlantic. NASTT and ISTT worked together again in Washington in 1992, in New Orleans in 1996 and in Las Vegas in 2003. The event in Las Vegas built on Ray Sterling (center) accepts the ISTT Gold Medal and NASTT's past achieveChairman's Award for Outstanding Lifetime Service. ments and plus members of the Program was a great success despite conCommittee and other countless cerns about the SARS outbreak in volunteers who have put together Hong Kong. a truly outstanding technical pro“Today we meet in Toronto at a gram and exhibition,” said time when world leaders are Downey. meeting for the G20 summit in The gathered international community enjoyed an exceptional six days of education, solution sharing and peer networking. The purpose of the conference was to showcase the latest in trenchless innovations and provide educational and networking opportunities with leading experts on a global scale. London. Challenging times lie ahead for our economies but in many parts of the world our industry is going take a lead in rebuilding our infrastructure from the bottom up. I’ll bet we have more fun than the guys in London,” said Dec Downey, ISTT Chairman in his opening address. Joe Loiacono was presented with an appreciation award for his hard work and dedication for serving as Program Chair of the event. He also credited the Program Committee members, session leaders, NASTT and BMI staff, and the attendees “who come and make everything happen.” “It’s been a real pleasure to work with NASTT in the preparation of this event. A lot of hard work has gone into putting together a truly international technical conference for which we can all be proud. I would personally like to thank Joe Loiacono, the Program Chair of this year’s No-Dig, and the forty “You are the ones, year after year, who provide our industry exhibitors and researchers with the problems and issues which they use to invent new products and technologies or improve the existing ones. You are the ones who make this industry grow by your networking and sharing of experiences at No-Dig. Thank The International No-Dig Show was co-sponsored by the International Society for Trenchless Technology (ISTT). This is the fifth international No Dig event to be held in North America. The first in Washington in 1988 positioned trenchless technology on the map on this NASTT/GLSLA - 2009 Trenchless Report 19 organizers have many special events planned including a historical timeline and exhibit to showcase the founding members. The conference theme of “Rebuilding North America’s Underground Infrastructure using Trenchless Technology” will prove to be timely and relevant given that throughout North America there is a renewed focus of infrastructure investment. S 2010 No-Dig Show Program Chair Mark Hallett poses with 2009 Program Chair Joe Loiacono. All 13 past and present NASTT chairs attended the show this year. The ISTT will host its International No-Dig in Singapore, Nov. 10-13, 2010. Visit - www.istt.com for more information. you again!” said Loiacono. Chris Brahler, NASTT Chair, highlighted the conference’s successes in his closing address. “We embarked on a technical conference and expo that broke all NASTT records for number of papers presented, for number of exhibitors, and the number of attendees. As if that wasn’t enough, we had a terrific turnout at the Educational Fund Auction raising over $40,000,” said Brahler. As a manufacturer, distributor, inspection and repair facility of drillstem tools for Mini, Midi and Maxi rigs, HDD Rotary Sales can provide not only insight and technical advice on the maintenance and handling of pipe, but also unprecedented quality control. “Our Gala Dinner and reception was really first class in every respect, and there we recognized outstanding projects and innovative products. We honored the life achievements and contributions of many people including countless volunteers who are responsible for putting on this conference.” “Yes, this has been an extraordinary week filled with many memories shared with good friends, and new approaches and practices learned. My hope is that everyone comes away from the 2009 NoDig conference feeling inspired and energized!” said Brahler. In 2010, NASTT will return to the birthplace where it all began – in Chicago – to hold the next No-Dig Show and to celebrate its 20th anniversary. Conference 20 www.hddrotary.com or call (936) 446-1200 NASTT/GLSLA - 2009 Trenchless Report City of Hamilton & GLSLA Host Japan Society of Trenchless Technology (JSTT) Kevin Bainbridge, C.E.T., Senior Project Manager of Subsurface Infastructure, City of Hamilton n April 2, 2008, the City of Hamilton’s Public Works Department, in partnership with the Great Lakes, St. Lawrence and Atlantic chapter of NASTT (NASTT/GLSLA), hosted a one-day workshop for 15 delegates from the JSTT (Japan Society for Trenchless Technology). The delegates were already in Toronto, attending the 2009 international No-Dig conference. The workshop was held at the Hamilton Convention Centre, and focused on the planning and use of Trenchless Technologies in the City of Hamilton. Several presentations were made by staff from the City of Hamilton’s O Public Works department on various trenchless technology programs the City has developed. In addition to the presentations, some time was spent networking and discussing mutual opportunities and challenges with respect to the life cycle management of buried infrastructure. The networking session resulted in some very useful and innovative exchanges of information, ideas, approaches, and technologies. It is always fascinating to discover the similarities, and the differences, in the problems faced in keeping buried infrastructure in good working condition, regardless of which continent the popu- lation centres lie. As an additional part of this workshop, a field demonstration was arranged with the City of Hamilton’s sewer lining contractor. Insituform Technologies was kind enough to arrange and supervise a guided tour for the group on a project whose main feature of interest was the installation of a 1.2m diameter Cured in Place Pipe (CIPP) liner on an 80year-old brick sewer. Many new business and professional contacts were forged, and an entertaining and informative session was enjoyed by all those present. S NASTT/GLSLA - 2009 Trenchless Report 21 NASTT’s No-Dig Show Heads to Chicago in 2010 Mark Hallett, No-Dig 2010 Program Chair Dear Trenchless Colleagues, On behalf of NASTT and the No-Dig Program Committee, I am pleased to announce that Chicago has been chosen as the destination location for the 2010 No-Dig Show, May 2-7. 2010 is a very special year for NASTT as we will be celebrating our 20th anniversary. In 1990, five key people began to brainstorm on the possibility of establishing a new association just for trenchless technology. That organization became known as NASTT and those five people became its founding members. Twenty years later, our society is a vibrant, growing organization of more than 1,200 members in the U.S., Canada and Mexico. 22 It is very appropriate that we return to the birthplace where NASTT began – in Chicago – to celebrate this significant milestone. To showcase the 20-year history of NASTT, we have planned a multi-media exhibit including interviews of past chairs, photographs and video, among other special events and awards. (I’ll have more information to report in my next letter.) The conference theme of Rebuilding North America’s Underground Infrastructure using Trenchless Technology will prove to be timely and relevant given that throughout North America there is a renewed focus of investing in our infrastructure. New topics for 2010: Infrastructure Investment; Environmental Issues; Social Costs and Impacts; Industry Trends, Issues and Concerns; Cutting-edge Advancements; and New Concepts for NASTT/GLSLA - 2009 Trenchless Report Trenchless Equipment, Materials and Methods No-Dig 2010 will be held at the Renaissance Schaumburg Hotel and Convention Center – a beautiful, luxurious new facility that combines hotel and meeting space – all in one location. The host hotel and event venue is convenient and accessible – 12 miles from O’Hare Airport and 26 miles from downtown Chicago. Chicago’s central location and dense population make it an ideal place to do business. After hours, world-class dining, theater and attractions await you! As you can see, Chicago has a lot to offer our No-Dig attendees. Please consider joining us next year at No-Dig 2010 as we learn how to Rebuild North America’s Underground Infrastructure Using Trenchless Technology. For conference updates and information, be sure to visit our web site at www.nodigshow.com. Regards, Mark Hallett NASTT/GLSLA - 2009 Trenchless Report 23 The Importance of Numbers The Chinese believe in lucky numbers, thus the 8 of the 8th of 2008 (08-08-08) was a lucky date. This date marked the start of the Beijing Olympics. It also marked the Intervention Plan’s best sheathing day to date. During the Olympics, each participant strives to achieve results that surpass his or her expectations aiming for an Olympic or World record. Project UX-08-002 – the rehabilitation of clean water supply conduits by jacketing on various streets of Montreal claims to be the largest of its kind ten- Piero Salvo, Eng. M. Eng. dered on the island of Montreal and the largest in the Province of Quebec. In keeping with the Olympic theme, 08-08-08 was a record setting day for the Intervention Plan. As part of Project UX-08-002, work on rue du Creusot in the Saint-Leonard borough set two records, the first for the longest continuous installation between two access shafts at 222 metres, and the second, for the longest total installation of 389 metres in the same day (two sheaths in total) for a 200 mm conduit. That date was also a site visit attended by several individuals from the Intervention Plan and the Saint-Leonard borough. Visitors were able to observe several steps of the project including conduit cleaning, plugging service access points, installation of sheaths in the conduit and the televised inspection of the conduit before and after the installation of sheaths. Figure 3: Cleaning equipment Figure 1: Record installation of 222 metres Figure 2: Record installation of 389 metres Figure 4: CCTV after sheathing NASTT/GLSLA - 2009 Trenchless Report 25 Mr. Tony Di Fruscia, Eng., M. Eng. Direction de la gestion stratégique des réseaux d’eaux (DGSRE) is the project manager. Piero Salvo, Eng., M. Eng. and Sandra Gelly, Eng., Intervention Plan are responsible for quality control and project supervision. S Figure 5: Andrée Séguin, Sandra Gelly, Chantal Morissette, Nora Bennis The following are some of the project statistics: at the beginning of April 2008, there was a call for tenders for the rehabilitation of water supply conduits with structural sheathing in 8 boroughs, with a diameter of 150 – 300 mm for a total length of 9 900 metres. The contract was valued at $6,195,370.13 including taxes – $1,888,610.38 in the SaintLeonard borough, $754,400.06 in the Anjou borough , $1,839,185.25 in the Montreal North borough, $150,744.56 in the Ville-Marie borough; $313,566.75 in the South Ouest borough; $722,431.75 in the CDN/NDG borough; $367,633.88 in the LaSalle borough and $164,797.50 in the Lachine borough. The project was developed based on needs identified in the preparation of the Partial Intervention Plan (PIP). In preparing the call for tender, it was agreed to extend the identified areas considerably as the neighbouring conduits were of the same type and age as those selected for rehabilitation by the PIP and anticipated costs would be more competitive. The project started on July 14, 2008 and the last 1000 meters was completed in the spring 2009. The contractor, AquaRéhab is currently using three cleaning and sheathing teams working in three boroughs simultaneously. 26 NASTT/GLSLA - 2009 Trenchless Report Figure 6: Sandra Gelly, Tony Di Fruscia, Piero Salvo 84"53&/$)-&44$0/46-5"/54 )"4+0*/&%'03$&48*5)(&/*7"3 "$"/"%*"/-&"%&3*/&/(*/&&3*/( 4FSWJDFTPGGFSFE Æ 4FMFDUJPOQSPDFTTBOEQMBOOJOHPGXBUFSNBJOBOETFXFS SFIBCJMJUBUJPOTUSBUFHJFT Æ 'FBTJCJMJUZTUVEJFTPOUIFVTFPGUSFODIMFTTUFDIOPMPHJFT Æ 1SFQBSBUJPOPGTQFDJ¾DBUJPOTBOEESBXJOHTGPSUSFODIMFTT QSPKFDUT Æ *OEVTUSZSFTFBSDIBOENBSLFUTUVEJFTPOUSFODIMFTT UFDIOPMPHZ Æ $MBTTSPPNBOEPOTJUFJOTQFDUPSUSBJOJOH Æ 2VBMJUZDPOUSPMGPSUSFODIMFTTJOTUBMMBUJPOT .POUSFBM]XXXHFOJWBSDPN Calculate the Benefits of Going Trenchless Michael Stimpson Contributing Writer renchless methods of installing underground pipe and cable have certain notinconsiderable advantages over conventional methods. The makers of equipment used in trenchless construction and rehabilitation have known this for a long time, as have the construction professionals who use that equipment and implement trenchless techniques. T The conventional approach of installing underground pipe by digging a trench, placing the pipe and then burying it means significant amounts of land must be disturbed and, at least in busy urban areas, everyday vehicle traffic is inconvenienced. In a large project, those disturbances and disruptions can be quite considerable. The trenchless alternative, on the other hand, requires less excavation for putting pipe and cable underground. That means less disturbance of the ground, reducing environmental impact. Trenchless construction also generally means less obstruction and muddling of vehicle traffic and other activities on or near the work site. And, of course, trenchless proponents say it’s the way to go in situations where excavation isn’t practical or the project is in an environmentally sensitive area. It also makes good sense because of reduced dust, pollution and noise, among other things. Clearly, the construction industry’s trenchless contractors have a strong case for their services. One “new” rhetorical instrument at their disposal relates to the recent rise in concerns over projects’ “carbon footprint,” pollution that scientists say contributes to global warming. Carbon footprint is the total amount of greenhouse gases produced by a project. It’s usually expressed in terms of the equivalent mass of carbon dioxide. In short, the question is how much is emitted in carbon-containing greenhouse gases during all of the tasks performed in a project. Carbon footprint and global warming have zoomed up the list of public issues in this decade, with virtually every major jurisdiction creating policies to reduce emissions. Cap-and-trade systems are on the horizon for U.S. and Canadian businesses, for example. And British Columbia’s provincial government has mandated all its cities to be “carbon-neutral” by 2012 – i.e., to find ways to offset their carbon emissions so that the net effect on he atmosphere is neutral. The North American Society for Trenchless Technology’s B.C. chapter (NASTT-BC) contends that going trenchless means lower carbon emissions than what is generated by typical open-cut procedures. David O’Sullivan, past chair and current board member of NASTT-BC as well as president of Surreybased P.W. Trenchless Construction since 2000, says the use of trenchless methods for a pipe replacement project can cut the carbon by an enormous percentage compared to use of the cut-and-cover option. The difference could be as much as 90 per cent, according to the construction industry veteran. NASTT/GLSLA - 2009 Trenchless Report 27 One important factor that makes trenchless more climate-friendly is in the huge amounts of fuel that must be burned to remove and replace material in the course of a conventional cut-and-cover project. That more conventional approach involves removing earth covering the utility zone, then moving and disposing of it, then replacing it and restoring it to solid ground. It’s easy to see how that requires a lot of energy generated by burning fossil fuels. As well, a study by University of Waterloo engineers showed how traffic disruptions during utility construction along roads result in excessive emissions from motor vehicles. The engineers concluded that trenchless construction eliminates much of that problem by reducing the disruption of traffic flows. “Reducing the amount of open trench also reduces the amount of soil removal to dump sites and importing fill material to fill the trench, minimizing truck emissions,” O’Sullivan recently told a construction magazine. NASTT-BC’s website (www.nastt-bc.org) offers a handy tool for figuring out how much less in carbon emissions a project could have if it were to be done via trenchless technology instead of open-cut methods. The Carbon Calculator, as it’s called, is the first online tool of its kind for trenchless-versus-excavation comparisons. obtaining government funding for low-carbon-emission projects. To give the calculator a test drive, Underground Construction magazine entered data for the hypothetical installation of 1,000 feet of 12-inch pipe underneath asphalt. The Carbon Calculator said open-cut installation would release more than 700 tonnes of CO2 while the CO2 emissions in installation via slipline/pipebursting techniques would emit about one-tenth as much. It should be noted that there are numerous variables involved in calculating carbon emissions from a future or hypothetical project. The Carbon Calculator produces estimates based on the data entered by the user, not spot-on projections. Having said that, it does demonstrate how going trenchless can be much greener than installation in a large long hole in the ground. Regardless of what you think of global warming science, it is important that the construction industry care about its environmental impact, efficiency and public image. “So, even if you do not buy into the reduced carbon concept, and think it is a government conspiracy, I think we all agree that we need to reduce our energy use,” P.W. Trenchless Construction President O’Sullivan wrote recently in David O’Sullivan Trenchless International magazine. “If we can use a number of methods of conIn a nutshell, here’s how the Carbon Calculator struction that can achieve these kinds of energy works: You enter basic project information and reductions and yet maintain our standard of living answer questions about pertinent project details; it then we need to change.” estimates the size of the project’s carbon footprint in O’Sullivan’s company, P.W. Trenchless terms of tonnes of carbon dioxide (CO2) emitted. It Construction, is a leading trenchless contractor in will estimate carbon emissions that would occur in B.C. that offers services in sliplining, pipebursting three types of trenchless construction: horizontal and directional drilling as alternatives to cut-anddirectional drilling, sliplining/pipebursting and, lastcover construction. Its personnel have been involved ly, cured-in-place pipe lining, point repair and groutin trenchless construction since many years before ing. The application’s output also includes an estiP.W. was founded in 2000. mate of how much trenchless techniques could O’Sullivan says he hopes to see trenchless construcreduce carbon emissions. tion become “the default method of underground The Carbon Calculator was developed for NASTTconstruction – not (just) an option to consider when BC by an engineering student at the University of site conditions make excavation difficult.” The British Columbia and was made available online in Carbon Calculator can help advance that cause. S January 2008. Its uses since then have included the production of supporting data for proposals aimed at 28 NASTT/GLSLA - 2009 Trenchless Report BALFOUR SANITARY SUBTRUNK SEWER REHABILITATION – ALTERNATIVE PROJECT DELIVERY PROCESS Ashley Rammeloo, P.Eng ., Project Manager, City of London, Wastewater & Drainage Engineering Department Kim Lewis, Vice President Special Projects, Liquiforce Services (Ontario) Inc. and Jim Breschuk, P.Eng, Partner and Project Manager, Dillon Consulting Limited INTRODUCTION Municipal governments are continually looking for more cost effective ways to deliver their infrastructure projects. The City of London Wastewater and Drainage Engineering Department has developed a hybrid project delivery mode, which incorporates the conventional infrastructure Public Tendering process (low price) with their Request for Proposal (RFP) process (best value) to deliver a cost competitive and high value project. CONVENTIONAL PROJECT DELIVERY Most municipalities use the public tender process to deliver a broad range of infrastructure projects. This process generally awards the work to the lowest price submitted. Value considerations, based on the successful contractors past performance on similar projects, are included in the award process for tendered work, but not heavily weighted in the award process. Occasionally, projects carried out by less experienced contractors, have quality issues and cost overruns which negatively impact the “value” to the Owner. Many municipalities currently use an RFP process to select qualified engineering consultants to undertake studies and design/construction for their infrastructure projects. This process considers the consultant fees, but also implements a rigorous evaluation process to examine the consultant’s experience, history and ability to carry out similar projects, adherence to schedule, budget control, etc. The focus of this process is to provide more emphasis on the “quality” and “value” considerations of the project deliverables. The underlying theme is that increased quality and value inputs by the consultant will result in more cost effective infrastructure solu- tions and investment strategies as well as limit the City’s exposure to risk. The end result is better value to the taxpayer. However, this process has not been used extensively for the design and construction of infrastructure projects. The City of London was seeking a project delivery process that could incorporate both philosophies of the current service delivery modes: low price and high value. THE PROJECT The Balfour Sanitary Sub-trunk Sewer (450mm diameter concrete pipe) was constructed in 1956. The sewer travels along a heavily treed ravine into Kiwanis Park where it outlets to the Pottersburg Trunk Sanitary Sewer. A review of the sewer inspection videos indicated that the sewer exhibited numerous longitudinal cracks and active infiltration, as well as pipes with fractures and distortion. Consequently, based on the condition assessment data and the ratings assigned to these sewer sections, it was concluded that these sewers would be ideal candidates for a NASTT/GLSLA - 2009 Trenchless Report 29 trenchless rehabilitation. A number of project specific issues were identified during site visits which were deemed to affect the selection of the appropriate rehabilitation program. These issues included: • Trafalgar Street is a major collector and bus route complicating traffic control measures. • The sewer is located in an easement in the rear yards of existing residences on the east side of Balfour Place creating access difficulties for repair or maintenance work. • The sewer extends across Kiwanis Park lands. Any construction activity in the park area will result in costly restoration because of construction vehicles and disruption to public access. • Sewage flow rates in the sub-trunk will require pumping and bypassing to enable the rehabilitation or replacement work to proceed. • The ravine is heavily treed and includes a tributary of Pottersburg Creek which will severely restrict any type of access for construction purposes (tree assessment required). • Portions of the sewer are within a flood plain for Pottersburg Creek and a permit may be required from the Upper Thames River Conservation Authority, which may affect construction methods and scheduling. The project was deemed to have numerous “value” elements and public impacts, which could be manipulated during the construction process to optimize the service life of the rehabilitated sewer pipes, minimize the cost, and reduce the impact on the public. Some of these considerations include: • Impact on residents (i.e. service interruption, traf- 30 NASTT/GLSLA - 2009 Trenchless Report fic control, etc). • Environmental impacts (i.e. Pottersburg Creek, noise, buried contaminants, etc). • Community impacts (i.e. Kiwanis Park use, local schools, etc). • Impact on municipal operations (i.e. transit, winter control, etc). City staff concluded that this project could be a good candidate for an alternative project delivery approach. ALTERNATIVE PROJECT DELIVERY PROCESS The City hired Dillon Consulting Limited to help develop a hybrid process capable of considering both low price and best value. After researching different value-based delivery modes, it was concluded that a lowest price/point system (used primarily for consultant services) could also be applied to a construction project. An evaluation matrix was developed identifying important project factors and their respective weights within a 100-point system. evaluation factor 1. Experience with CIPP projects 2. Knowledge of local standards and policies 3. Experience dealing with the Public 4. Innovativeness relating to pipe rehabilitation, and sewer bypassing, traffic control, etc. 5. Cost of the work total score available Points 10 10 10 30 40 100 assigned Points Each factor could subsequently be broken down further to provide more insight and permit more objective point allocation during the proposal evaluation phase of the project. Dillon and City staff developed the project parameters and constraints (i.e. schedule, start date, road closures, bypass pumping requirements, liner design, acceptable environmental impacts, etc) This information was then incorporated into a hybrid construction document which would outline the process that the contractors would follow to deliver a project which would provide the lowest cost/point. The project was designated as a Request for Proposal. Since the decision had been made to undertake this project as a “trenchless” application, qualified trenchless contractors would be invited to submit a proposal. An onsite meeting would be included in the process to review site conditions, answer questions, and clarify any other matters. After a standard “tendering” period with a proposal closing date, all submissions received would be reviewed and evaluated against “the process”. A team of evaluators (minimum of three members) would then select the submission/contractor which provided the lowest cost/point and highest value to the City. The project would then be awarded and Dillon would provide conventional construction services to administer the project in accordance with the City’s standard practices for construction projects. TESTING THE WATERS Six specialized trenchless contractors were invited to submit proposals. After a two week “tendering” period, four contractors submitted proposals. All proposals were evaluated and a recommendation was made to Council for approval. The submission by Liquiforce Services (Ontario) Inc. was deemed to provide the lowest cost/point for the Balfour project .The Liquiforce submission was also the lowest cost proposal submitted. The Balfour project was completed successfully in three weeks as per the project requirements. LESSONS LEARNED At the conclusion of the project, Dillon and City staff completed an assessment of the process and its suitability for undertaking infrastructure construction projects. Areas for improvement to the delivery process were also considered. This alternative delivery mode was deemed to be a success when applied to “trenchless” type projects. Ashley Rammeloo P.Eng, the City’s Project Manager, was satisfied with the results of the first trial of this new process. “The “trenchless” industry is highly specialized, which lends itself well to projects where the contractors can apply their unique experience within the project framework set out by the Owner. We will definitely apply this process to future “trenchless” projects as well as look for opportunities to “test drive” the process with other types of infrastructure work.” The value-added component was enhanced by the ability of the process to enable the contractor to identify creative construction solutions. This allowed the contractor to minimize local impacts within a competitive cost structure where “low price” was only one of many considerations. Kim Lewis, Vice President Special Projects for Liquiforce, was especially enthusiastic about the process. “This process forces us as the contractor to think carefully about the logistics of our proposal, which helps to reduce the risk of cost overruns and unexpected events which can sometimes have undesirable results. It allows the contractor the flexibility to draw on their years of experience to put forth a detailed and solid work plan. Simply put, give us the parameters and leave it up to us to prove to you that we are up to meeting the challenges of your project.“ With the current requirement for municipalities to deliver Infrastructure Stimulus Funding projects quickly, the alternative delivery process, when used for trenchless projects, was instrumental in reducing the project lead time getting projects out to the contractors in half the time of conventionally delivered projects. Jim Breschuk P.Eng, a Partner and Project Manager with Dillon Consulting sees this process as an excellent fit for trenchless projects. “Project lead times can be significantly reduced by recognizing and utilizing the considerable experience of the contractor. For this type of work, there can be a greater value-added component to the project by letting the contractor get into the finer details of constructing the works, leaving the stipulation of project limitations and minimum requirements to the Owner and their consultant. Reduced lead times get the projects “on the street” sooner and ultimately results in lower costs for the Owner.” S NASTT/GLSLA - 2009 Trenchless Report 31 Triomphe de la technologie sans tranchée à Toronto Mike Willmets, Directeur général, NASTT Si vous êtes engagés à faire de bonnes décisions en ce qui concerne l’infrastructure sous-terraine, vous avez sans doute participé à la foire No-Dig 2009 du 29 mars au 3 avril à Toronto, Canada. Plus de 1 900 personnes de 43 pays ont de toute évidence pensé que c’était la chose à faire. Il semblerait aussi que la foire No-Dig vous aide à prendre de meilleures décisions. C’est la première fois que la foire internationale No-Dig a lieu au Canada et la 4e foire pour NASTT en partenariat avec la International Society for Trenchless Technology. Cette année, 140 articles techniques évalués par les paires ont été présentés, du jamais vu pour la foire NoDig, tout à l’honneur du comité responsable de la programmation pour 2009. De plus, les halls d’exposition du Sheraton Centre étaient au complet, ayant accueilli 124 entreprises dont certaines qui en ont profité pour lancer de nouveaux produits de la technologie sans tranchée. Merci à tous les commanditaires ‘Premium’ et aux exposants de leur appui et leur générosité. Pour ceux et celles intéressés à la formation, NASTT a présenté pour la première fois sous un toit, tous les six cours sur les règles de bonne pratique de fabrication et l’assistance était nombreuse. Nous désirons particulièrement remercier les excellents professeurs bénévoles. La foire de Toronto a sans doute été un événement jalon pour NASTT, non seulement parceque nous avons dépassé les records de participation et de commanditaires, mais parce que nous l’avons fait en dépit de la conjoncture économique difficile. Nous avons 32 tous adopté une nouvelle attitude vis-à-vis l’économie, et pour que l’industrie de la technologie sans tranchée accorde le sceau d’excellence à la foire No-Dig est preuve qu’elle est de qualité et qu’elle vaut le prix du billet. Le 8e encan annuel au profit du fonds d’éducation a également bénéficié d’un nombre record de contributions et nous vous en remercions. Le meilleur investissement que nous puissions faire est celui de venir en aide aux étudiants. Je suis aussi fier de signaler que les Canadiens ont participé en grand nombre à la foire 2009, plus que les autres pays, ce qui a sans doute contribué à notre succès. C’est bien sûr le bénévolat qui fait fonctionner NASTT et la foire NoDig. Sans cet énorme engagement de la part de nos membres, l’envergure des activités présentées ne serait pas possible. Le chapître des Grand Lacs, du Saint-Laurent, et de l’Atlantique mérite d’être reconnu et félicité pour sa contribution sans pareille, tout comme lors de chaque foire. Dans son ensemble, votre chapître est un groupe impressionnant et une source d’inspiration qui est devenu une voix forte au sein de l’industrie. Nous vous remercions de partager avec nous vos talents ainsi que de votre appui enthousiaste envers notre société à but non lucratif. Au nom de tous les membres de NASTT, je désire sincèrement féliciter les nouveaux élus à votre conseil d’administration et je leur souhaite beaucoup de succès. Lorsque NASTT a été créé en 1990, une représentation canadienne d’une mer à l’autre n’était qu’une chimère. Le chapître des Grands Lacs, du Saint-Laurent et de l’Atlantique est en grande partie responsable de cette réalisation, et j’espère que vous serez des nôtres pour fêter le 20e anniversaire à la foire No-Dig 2010 à Chicago, Illinois. Mike Willmets Directeur général, NASTT A New Level of Thinking A new energy is flowing at DELCAN Water. We continue to be at the forefront of providing government and corporate clients in Canada and around the world with the highest level of engineering expertise and services. 406mm - HDD under the Rideau Canal, Ottawa Contact us today and learn more about how you can benefit from the new ideas that are flowing at DELCAN Water. 2100mm - CIPP King Edward Avenue, Ottawa OTTAWA • MARKHAM • LONDON DELCAN Water 625 Cochrane Drive, Suite 500, Markham, Ontario, Canada L3R 9R9 Tel: 905.943.0500 Fax: 905.943.0400 NASTT/GLSLA - Rapport Sans tranchée - 2009 • VANCOUVER • www.delcan.com [email protected] VICTORIA Pure jette un coup d’oeil attentif Michael Stimpson Rédacteur Pure Technologies Ltd. est une société internationale de technologies et services dont le siège social est situé à Calgary, en Alberta. Le portefeuille de marques déposées de la société comprend SoundPrint, un système à l’écoute des acoustiques pour la surveillance continue de l’état structurel des édifices, des ponts et d’autres structures; SoundPrint AFO, un système sensible aux acoustiques distribué par fibre-optique pour l’écoute et la surveillance de pipelines; P-Wave, une technologie d’évaluation électromagnétique pour les conduites cylindriques en béton précontraint; et SmartBall, un outil révolutionnaire qui permet de détecter les fuites et les poches de gas emprisonnées dans les conduites sous pression. La société a mis à l’oeuvre ses technologies SoundPrint et P-Wave à Montréal depuis que la ville lui a accordé un contrat pour l’inspection de pipelines en 2006. Pure a été embauché pour inspecter et surveiller les conduites principales d’eau à grand diamètre en béton précontraint de la ville. Ce contrat démarque une percée pour Pure, qui à ce point réalisait la majorité de ses revenus à l’étranger. Par l’entremise d’un marché de sous-traitance avec Advitam Solutions, une société montréalaise, ce travail a généré d’importants bénéfices à la ville dès la première année. La technologie de surveillance acoustique SoundPrint et la technologie électromagnétique de P-Wave ont été employées pour détecter les endroits en détresse dans les conduites principales de transmission d’eau qui nécessitaient une attention immédiate ou encore une surveillance continue. Les réparations ultérieures ont empêché la venue de problèmes importants, possiblement même la catastrophe. «On a trouvé des dommages dans la conduite principale Pie Neuf, une pipeline PCCP de 72 pouces de diamètre. Cette pipeline, essentielle pour la ville de Montréal, ne pouvait être hors service parce qu’il n’y avait pas de redondance dans le système » explique Mark Holley, président de Pure Technologies US Inc. « Le câble à fibre optique a été installé dans la conduite d’eau en employant un sytème de déploiement de parachute » précise Holley. « Le câble a ensuite été connecté à un DAU qui a permis à Pure de surveiller et d’enregistrer toute activité de rupture de câble de façon continue. Les enregistrements ont identifié une série de ruptures étendues sur une durée de trois à six mois. Il y avait tellement de ruptures que la ville a regardé de plus près plusieurs pipelines individuelles qui montraient une détérioration avancée et elle a mis en oeuvre des réparations de secours. C’EST PURE Montréal avait besoin d’une évaluation de l’état électromagnétique de ses conduites principales d’eau afin d’établir une ligne de base et un programme pour gérer ces actifs indispensables. SoundPrint AFO a été déployé pour aider à la ville de Montréal d’obtenir des informations sur la détérioration en temps réel des ruptures de câble qui se passaient possiblement dans son sytème de transmission d’eau PCCP. De plus, des inspections à entrée habitée P-Wave et des inspections robotiques P-Wave de plusieurs kilomètres de conduites ont aussi été effectuées. SoundPrint AFO a découvert un nombre de ruptures de câble dans certaines sections d’une conduite principale d’eau en béton précontraint de 72 pouces, pendant une courte période en 2007. La ville en a été avisée et elle a placé la conduite hors service pour y regarder de plus près. Elle a trouvé plusieurs ruptures de câble et a entrepris un programme de réparation. Câble qui transmet les données au dispositif d’acquisition NASTT/GLSLA - Rapport Sans tranchée - 2009 33 Dispositif robotique pour l’inspection Elle a pu remettre la conduite principale en service quelques mois plus tard sans envisager une faillite catastrophique. L’expérience de la situation à Montréal démontre que les services Pure Technologies sont prouvés et peuvent aider les clients à gérer leurs pipelines en temps réel. Aujourd’hui, une autre section de conduite est surveillée avec SoundPrint AFO un procédé de déploiement à voie humide bien qu’elle demeure en service. Pure continue la surveillance des pipelines PCCP à Montréal. Un autre déploiement de la technologie P-Wave robotique est prévu la deuxième semaine d’octobre 2009. Nord et nous anticipons que Jason nous permettra d’accéder à un plus grand marché pour l’inspection et l’évaluation des conduites en matériaux ferreux et autres. « Jason est particulièrement fort dans le marché des eaux d’égout, un domaine dans lequel Pure n’a eu qu’une visibilité limitée mais où nous voyons d’énormes possibilités » continue Elliot. « De plus, nous croyons que la réputation internationale de Jason et ses activités aideront à générer des opportunités pour nos technologies d’inspection et de surveillance dans les marchés outremer. » Jason Consultants qui compte des bureaux en Europe et aux États-Unis est reconnu comme une des meilleurs sociétés en design dans son secteur. En 2009, Pure a acquis les actifs de Pipe Eye International, un fournisseur de services en inspection robotique. S L’ACQUISITION C’EST BON POUR LES AFFAIRES Pure Technologies Ltd. a récemment annoncé l’acquisition de Jason Consultants Group. Jack Elliot, le président de Pure a fait les remarques suivantes à ce sujet: « L’acquisition de Jason Consultants Group cadre bien avec notre stratégie d’augmenter nos services spécialisés en ingénierie afin d’ajouter à notre technologie et nos activités de services techniques. L’acquisition de Openaka en 2006 nous a permis d’augmenter notre chiffre d’affaires dans le secteur des conduites en béton précontraint. Cependant, les conduites en béton précontraint représentent seulement un petit pourcentage du total de l’infrastructure des conduites d’eau et des eaux d’égout en Amérique du 34 NASTT/GLSLA - Rapport Sans tranchée - 2009 L’inspection révèle les dommages à la pipe QUESTIONS AU SUJET DE LA TECHNOLOGIE SANS TRANCHÉE? Nous Avons Les Réponses. NORTH AMERICAN SOCIETY FOR TRENCHLESS TECHNOLOGY TM Branchez vous à l’industrie sans tranchée. Devenez membre dès aujourd’hui NASTT est votre lien à des milliers de professionnels de technologie sans tranchée aux niveaux local, national et international ainsi qu’aux leaders de l’industrie. Que votre entreprise soit celle de l’ ingénierie, des travaux et services publics, de la construction souterraine, ou encore celle de la fabrication d’équipement, NASTT est la ressource définitive de l’industrie de la technologie sans tranchée et la mise en application de ces méthodes pour le bénéfice du public. Que ce soit des ressources éducatives, des outils de formation ou autres, NASST offre à ses membres l’accès à une mine de renseignements et l’opportunité de faire du réseautage. Les bénéfices d’affiliation: • Rabais uniquement pour les membres • Accès gratuit aux outils de référence et publications en ligne • Abonnement aux magazines de l’industrie Éducation et formation • Opportunités de leadership NASTT offre des programmes d’éducation et de formation exceptionnels pour les professionnels de la technologie sans tranchée. En ce moment, NASTT offre six cours de formation, soit le chemissage (CIPP), le forage horizontal dirigé (HDD), les techniques d’éclatement, la réhabilitation des conduites secondaires, le survol des technologies sans tranchée et les nouvelles méthodes d’installation tels le forage à la tarière, le levage de tuyau, le fonçage, et la méthode tube pilote. Participez et obtenez des crédits d’éducation permanente en étudiant. • Engagement dans votre chapître régional • Et plus encore! Nos membres adhèrent souvent pour une raison, et découvrent ensuite la valeur de bien d’autres. Devenir membre c’est facile. Visitez notre site web à www.nastt.org ou signalez le 613-424-3036 (au Canada) ou encore le 703-217-1382 (aux ÉU) pour les détails d’adhésion. La foire! La foire annuelle No-Dig est le plus grand événement de la technologie sans tranchée en Amérique du Nord, offrant une TM collection impressionante de documents de qualité, un hall d’exposition accueillant plus de 125 entreprises de l’industrie de la technolgoie sans tranchée présentant leurs produits et services, une série de cours spécialisés, de nombreuses opportunités divertissantes de réseautage et des prix particuliers. Notez la date de la foire No-Dig de NASTT du 2 au 7 mai 2010 à Chicago (Schaumburg) Illinois! 1655 N. Ft. Meyer Drive, Suite 700 Arlington, VA 22209 Tél.613-424-3036 (Canada) ou 703-217-1382 (ÉU) www.nastt.org La foire No-Dig met le cap sur Chicago en 2010 Mark Hallett, Président du Comité organisateur No-Dig 2010 Chers collègues de l’industrie sans tranchée, De la part de NASTT et du comité No-Dig 2010, c’est avec plaisir que je vous annonce que Chicago accueillera la foire «2010 No-Dig Show», du 2 au 7 mai. 2010 est une année spéciale pour NASTT puisque nous célebrerons notre vingtième anniversaire. En 1990, cinq personnes clé ont commencé à considérer la possibilité d’établir une nouvelle association pour la technologie sans tranchée. Aujourd’hui, cette organisation s’appelle NASTT et ces cinq personnes en sont devenus les membres fondateurs. Vingt ans ont passé et notre société est vibrante et en plein essor avec plus de 1 200 membres aux États-Unis, au Canada et a Mexique. Il est tout à fait approprié que nous retournions à l’endroit où 36 NASTT a vu le jour – à Chicago – pour célébrer ce jalon important. Dans le but de mettre en valeur les vingt ans d’histoire de NASTT, nous avons prévu une présentation multi-média qui inclut des entrevues avec les présidents sortants, des photos et des vidéos, ainsi que d’autres activités et la remise de prix. (J’aurai plus de détails à vous donner dans ma prochaine lettre.) Le thème de la conférence Rebuilding North America’s Underground Infrastructure using Trenchless Technology s’avérera à propos et pertinent étant donné qu’il existe partout en Amérique du Nord un regain d’intérêt dans l’investissement de notre infrastructure. Nouveaux thèmes pour 2010 : l’investissement dans l’infrastructure; les enjeux environnementaux; les coûts sociaux et leur impact; les tendances de l’industrie, les enjeux et les préoccupations; les avances à la fine pointe de la technologie; les nouveaux concepts en matériaux, en méthodes et en équipement sans tranchée. No-Dig 2010 aura lieu à l‘hôtel Renaissance Schaumburg NASTT/GLSLA - Rapport Sans tranchée - 2009 Hotel and Convention Center – un bel et luxueux établissement qui fusionne hôtel et centre des congrès – à un même endroit. Notre hôtel d’accueil et lieu de réunion est accessible et pratique – à 12 milles de l’aéroport O’Hare et à 26 milles du centre-ville de Chicago. L’emplacement central de la ville de Chicago et sa population dense font d’elle un endroit idéal pour les affaires. En soirée, les restaurants, les théatres et d’autres divertissements vous attendent. Comme vous le voyez, Chicago a plein de choses à offrir aux participants de la foire No-Dig. Soyez des nôtres l’an prochain à No-Dig 2010 alors que nous apprendrons comment reconstruire les infastructures nord-américaines en utilisant des techniques sans tranchée (Rebuild North America’s Underground Infrastructure Using Trenchless Technology). Pour de plus amples renseignements au sujet de la conférence et toute autre information, nous vous invitons à visiter notre site web à www.nodigshow.com. Bien à vous, Mark Hallett Le CERIU présent à l’International No-Dig 2009 de Toronto GLSA Magazine_INFRA2009.pdf 1 14/09/09 2:26 PM Isabel Tardif, Directrice, CERIU u 29 mars au 3 avril s’est déroulé l’International No-Dig 2009 Show à Toronto. Organisé par la North American Society for Trenchless Technology (NASTT) en A vision for the future built on partenariat avec l’International Society for Trenchless Technology (ISTT), il s’agit du plus Congress grand événement sur lesINFRA méthodes2009 et les techniques sansNovember tranchée, reconnues pour optimiser les 16 to 18 investissements et améliorer l’état des infrastrucFairmont Tremblant, tures souterraines. D Municipal Infrastructures: Mont-Tremblant - Québec Le CERIU était présent à ce rendez-vous. Sa directrice, Isabel Tardif, responsable du Conseil permaM nent Infrastructures souterraines a présenté une Yconférence intitulée How to Take Advantage of Green Thinking to Get More Funding for Infrastructure. CM S’adressant aux gestionnaires et aux élus qui veuMYlent privilégier des solutions vertes et optimiser les ressources financières de leur municipalité, CY madame Tardif a démontré comment le choix d’un CMY bassin adapté ainsi qu’une procédure d’évaluation des mesures et des modélisations associées à l’infilK tration d’eau parvenaient à garantir une réduction des dépenses énergétiques et des gaz à effet de serre. En effet, si l’on considère que l’étanchéisation améliore la durabilité des systèmes d’égouts et permet un report des projets d’implantation de stations de traitement des eaux usées, cette approche comporte des avantages économiques non négligeables à long terme pour les municipalités. C de chantier était aussi au programme pendant laquelle a eu lieu un chemisage structural d’une conduite d’égout en brique de grand diamètre. 15 years ofa pu experience L’événement compter sur la participation de nombreux membres du CERIU dont celle de M. Joseph Loiacono, Sanexen, à titre de président du Comité organisateur. Mettre la référence internet : www.nodigshow.com Avis aux intéressés, l’édition 2010 aura lieu à Chicago du 2 au 7 mai 2010. $0/46-5"/5484"4"/453"/$)c& "+0*/5(&/*7"36/-&"%&3&/ */(c/*&3*&"6$"/"%" 4FSWJDFTPGGFSUT Æ cUVEFTEFGBJTBCJMJUnQPVSMµVUJMJTBUJPOEFUFDIOJRVFTTBOT USBODInF Æ 1SnQBSBUJPOEFTUSBUnHJFTEµBVTDVMUBUJPO SnTFBVYEµFBVQPUBCMFFUEµnHPVU Æ "OBMZTFTEµJOTQFDUJPOTUnMnWJTnFTFUSFDPNNBOEBUJPOT EµJOUFSWFOUJPO Æ 1MBOTEFWJTFUTVSWFJMMBODFEFDIBOUJFSQPVSEFTQSPKFUT TBOTUSBODInF Æ $POUSyMFEFRVBMJUnQPVSMFTJOTUBMMBUJPOTTBOTUSBODInF Æ $PVSTEFGPSNBUJPOQPVSEFTTVSWFJMMBOUTEFDIBOUJFST Lors de cet événement, Mme Tardif, a également participé à un atelier d’une journée où une délégation de membres de la Japanese Society for Trenchless Undergrounds Technology (JSTT) était invitée par la Infrastructures ville de Hamilton à échanger sur diverses techInvestigation Technique niques en infrastructures souterraines. Une visite Development 38 NASTT/GLSLA - Rapport Sans tranchée - 2009 Underground Infrastructures Rehabilitation .POUSnBM]XXXHFOJWBSDPN l’importance des chiffres Le peuple chinois croit aux numéros chanceux et pour lui le 8 du 8 de 2008 (08-08-08) était une date chanceuse. Cette date correspond au début des Jeux olympiques de Beijing et pour le Plan d’Intervention, marque la plus grande journée d’installation de gaines à date. Pendant les Jeux olympiques, chaque participant vise à atteindre des résultats qui dépassent ses attentes et tente d’établir un nouveau record olympique ou mondial. Le projet UX-08-002 – travaux de réhabilitation des conduites Piero Salvo, ing. M. ing d’eau potable par chemisage sur diverses rues de la ville de Montréal prétend être le plus grand projet soumis à un appel d’offres sur l’Ile de Montréal et le plus grand projet de ce genre dans la province de Québec. En gardant l’esprit des Jeux olympiques, cette même journée, le 08-08-08, a été une journée de records pour le Plan d’Intervention. Dans le cadre du projet UX-08-002 les travaux sur la rue du Creusot, dans l’arrondissement Saint-Léonard ont été témoins de deux records, le premier pour la plus longue installation continue de 222 mètres entre deux puits d’accès et le deuxième pour la plus grande installation totale de 389 mètres dans la même journée (deux gaines en totalité) pour une conduite de 200 mm. Cette même journée, plusieurs personnes du PI et de l’arrondissement Saint-Léonard ont fait une Figure 3 – Équipement de nettoyage Figure 1 – Record d’installation 222 mètres Figure 2 – Record d’installation 389 mètres Figure 4 – CCTV après gainage NASTT/GLSLA - Rapport Sans tranchée - 2009 39 Le projet a été élaboré selon les besoins identifiés dans la préparation des Plans d’Intervention Partiel (PIP). Lors de la préparation de l’appel d’offres il a été convenu de prolonger les secteurs identifiés de façon importante car les conduites avoisinantes celles choisies dans les PIPs étaient du même type et année de construction et que les prix attendus seraient plus compétitifs. Le projet a débuter le 14 juillet 2008 et le dernier 1000 mètres a Figure 5 – Andrée Séguin, Sandra Gelly, Chantal été complété au printemps 2009. Morissette, Nora Bennis L’Entrepreneur, AquaRéhab visite de chantier. Les visiteurs ont pu observer emploie présentement trois(3) équipes de nettoyage et plusieurs étapes du processus dont le nettoyage de gainage et travaille dans trois arrondissements simulla conduite, le bouchonnage des entrées de servtanément. ice, l’installation de gaines dans la conduite et l’inM. Tony Di Fruscia, ing., M.ing. de la Direction de spection télévisée de la conduite avant et après la gestion stratégiques des réseaux d’eaux (DGSRE) l’installation des gaines. assure la gestion du projet. Piero Salvo, ing., M.ing. et Voici quelques statistiques du projet en question : L’appel d’offres a été lancé au début avril 2008 pour un projet de réhabilitation des conduites d’aqueduc avec une gaine structurale dans huit (8) arrondissements, ayant un diamètre de 150 à 300 mm et une longueur totale de 9 900 mètres. La valeur du contrat se chiffre à 6 195 370, 13$ (toutes taxes incluses) – 1 888 610,38$ dans l’arrondissement de SaintLéonard; 754 400, 06 $ dans l’arrondissement Anjou; 1 839 185, 25$ dans l’arrondissement Montréal-Nord, 150 744, 56$ dans l’arrondissement VilleMarie; 313 566, 75$ dans l’arrondissement Sud-Ouest; 722 431, 75$ dans l’arrondissement CDN/NDG; 367 633, 88$ dans l’arrondissement LaSalle; 164 797, 50$ dans l’arrondissement Lachine. 40 Sandra Gelly, ing. du Plan d’Intervention assurent la gestion du contrôle de la qualité et la surveillance des travaux. S Figure 6 – Sandra Gelly, Tony Di Fruscia, Piero Salvo NASTT/GLSLA - Rapport Sans tranchée - 2009 erience Nouvelles fiches techniques en infrastructures souterraines Isabel Tardif, Directrice, CERIU e CERIU a élabore sept nouvelles fiches techniques du Classeur Infrastructures souterraines qui ont été réalisées avec l’aide de plusieurs municipalités du Québec afin d’aider les intervenants à mieux maîtriser les techniques d’auscultation et de réhabilitation. L En voici la liste complète : Techniques d’auscultation - Étude de la corrosivité des sols, en collaboration avec l’agglomération de Longueuil (AGp01.p1) - Localisation de conduites souterraines, en collaboration avec la municipalité de SainteMarie Madeleine (AGp-03.p1) - Mesure de débit et test de fumée, en collaboration avec la ville de Saint-Hyacinthe (AM02.p1) Techniques de réhabilitation - Excavation pneumatique, en collaboration avec la ville de Québec (IP-03.p1) - Dérivation temporaire, en collaboration avec la ville de Gatineau (IP-05.p1) - Protection cathodique par anode sacrificielle, suivi et maintenance en collaboration avec la ville de Gatineau (SP01.p1) - Protection cathodique par anode sacrificielle, en collaboration avec la ville de Boucherville (SP-01.p2) NASTT/GLSLA - Rapport Sans tranchée - 2009 41 Le revêtement structurel de conduites maîtresses dans la ville d’Ottawa retourne à ses racines Todd Penfound, TSAI., Ville d’Ottawa George Blow, P. Ing., Robinson Consultants Inc. Arrière plan La ville d’Ottawa emploie le revêtement structurel depuis 2001 comme partie de leur programme continu de rénovation de conduites maîtresses. En octobre 2001, Ottawa est devenu la première ville en Ontario à procéder à l’installation d’un nouveau système de revêtement structurel dans leur système de distribution d’eau. Le projet pilote comprenait le revêtement structurel de 1,5 km de conduites maîtresses en fonte de 152mm dans le lotissement de Crystal Beach à l’ouest de la ville. Dans les huit dernières années, la ville a procédé à près de 30 km de conduites maîtresses dans différents quartiers de la ville. Ceci n’est qu’un petit pourcentage des plus de 1 000 km de conduites maîtresses employées dans le réseau de distribution d’eau de la ville, qui compte plus de 2 500 km de conduites maîtresses. En 2009, le programme annuel de revêtement s’est poursuivi dans la région de Lakeview, un lotissement immédiatement adjacent à Crystal Beach. mm à 305 mm de diamètre. Les vieilles conduites maîtresses non-revêtues peuvent développer une accumulation ou tuberculisation causée par la corrosion interne qui peut réduire la capacité hydraulique et causer les problèmes d’eau rouge. À cause de cette tuberculisation, la région Lakeview est devenue une source d’un bon nombre de fuites de conduites maîtresses et de problèmes d’eau rouge. Un nettoyage par chasse d’eau était requis régulièrement en réponse aux nombreuses plaintes des résidents. Les routes et les égouts existants sont en bonne condition et ont une durée de vie estimée à plus de 20 ans. Ces facteurs, combinés avec l’impact atténué de la construction sans tranchée sur la vie quotidienne des résidents, font en sorte que cet endroit est idéal pour une réhabilitation sans tranchée. Le revêtement structurel complet a été choisi comme solution afin de prolonger la vie du tuyau cible partiellement détérioré. Les exigences du système de revêtement intérieur comprenaient un plan Emplacement du projet Le projet Lakeview En novembre 2008, la ville a retenu les services de Robinson Consultants Inc. afin d’évaluer la pertinence d’une solution sans tranchée et de concevoir un plan pour la réhabilitation des conduites maîtresses dans la région de Lakeview Park. La ville d’Ottawa observe certains critères dans la sélection des endroits où le revêtement structurel se déroule. Dans le cas de la région Lakeview on retrouve 3,7 km de conduites maîtresses en fonte vieilles de 40 ans allant de 150 Tranchée à ciel ouvert 42 NASTT/GLSLA - Rapport Sans tranchée - 2009 Construction sans tranchée Revêtement inversé et puits d’accès permettant de rencontrer les normes F1216 de la ASTM et une résine epoxyde comportant le certificat d’agrément 61 de la NSF. Durant l’étape du désign, un journée porte-ouverte a eu lieu au centre communautaire local et l’assistance était nombreuse. Une fois le processus de revêtement intérieur expliqué aux participants, la communauté a fortement appuyé le projet. Cet appui s’est fait sentir tout au long de la période de construction. La rétroaction régulière de la part des résidents a été positive en raison des interruptions très limitées causées par les démontages, la poussière et le bruit. L’envergure du projet exigeait une construction en trois étapes afin de limiter la zone nécéssitant des services d’eau temporaires. Une fois les services temporaires d’eau en place, la conduite maîtresse a été isolée et une inspection TVCF a été exécutée afin de vérifier l’état de la pipe et de localiser les coudes ou les réducteurs impassables. Pendant l’inspection TVCF, des tampons ont été insérés dans les connexions de service afin de permettre un rétablissement ultérieur en prévenant que la résine se réplace et bloque les connexions de service. Le processus de revêtement intérieur comprend son imprégnation avec une résine époxyde, ou processus d’impregnation complète, son insertion dans le tuyau cible et son étuvage. Le processus d’imprégnation complète s’est fait sur le site et consistait à imprégner de résine époxyde le revêtement en feutre à deux épaisseurs renforcé de fibre de verre. L’insertion du revêtement s’est fait en le poussant en position inversée avec de l’air à travers le tuyau cible. C’était la première fois dans les huit années du programme de revêtement à Ottawa qu’on utilisait le processus de revêtement inversé, tous les autres projets de revêtement ayant utilisé la méthode de tirage sur le fond. Une fois le revêtement en place entre chaque puits d’accès, on a commencé le procédé de durcissement en injectant de la vapeur dans le tuyau revêtu. Ce processus a pris environ trois heures pendant lesquelles la chaleur augmentait d’environ 90 degrés Celsius par heure, suivi d’une période de durcissement de deux heures et demie. Les sections individuelles de revêtement ont été complétées en longueurs de 75 m à 160 m. Une fois le nouveau revêtement durci, un test de pression hydrostatique a été effectué pour assurer un produit final libre de fuite. Une fois le test de pression complété avec succès, les connexions de service ont été rétablies de l’intérieur du tuyau par l’entremise d’un outil tranchant robotique guidé par télécommande. L’outil robotique tranche à travers le revêtement et enlève le tampon inséré durant l’étape d’inspection par TVCF afin que les connexions de services puissent être rétablies sans démontages additionnels. En plus du travail de revêtement, toutes les valves et prises d’eau d’incendie ont été remplacées. Le projet comprenait l’ajout de valves à certains endroits afin de répondre aux critères d’espacement de 300 m exigés par la ville d’Ottawa. Des prises d’eau d’in- Pouvoir d’imprégnation complète NASTT/GLSLA - Rapport Sans tranchée - 2009 43 Outil robotique rétablissant les connexions de service cendie supplémentaires ont également été ajoutées à plus proche intervalle afin de répondre aux normes de protection d’incendie qui exigent de 110 à 125 m d’écart alors que certains endroits comptaient jusqu’à 310 m d’écart. De nouvelles anodes de magnésium ont été installées dans les démontages afin de protéger les nouvelles valves et prises d’eau d’incendie contre la corrosion et pour offrir une protection contre la corrosion externe du tuyau cible. Les bénéfices du revêtement structurel On estime que la réhabilitation de conduites maîtresses à Lakeview a permis d’épargner plus de 1, 5 millions de dollars, ce qui représente une épargne d’environ 40% comparé aux tranchées à ciel ouvert traditionnelles. Tenant compte de la longueur des conduites maîtresses réhabilitées dans la ville d’Ottawa depuis 2001, on estime que le montant total épargné par le programme annuel de revêtement se chiffre à plus de 10 millions de dollars. En plus des épargnes associées aux coûts en capital et au cycle de vie, la réduction des interruptions aux clients dans la communauté démontre la valeur d’utiliser la technologie sans tranchée là où les circonstances le permettent. Parmi les autres bénéfices du programme de revêtement structurel on retrouve une réduction dans les durées de construction, moins d’impact sur les trottoirs, les chaussées et les autres services, une amélioration dans le débit d’eau grâce à une friction réduite dans les tuyaux internes, et finalement des conduites maîtresses au chemissage complet et résistantes à la corrosion qui devraient durer plus de 40 années. Bien que le projet Lakeview se poursuive jusqu’au printemps 2010, on le considère un succès grâce à la collaboration de tous les intervenants, y compris Aqua Rehab, l’entrepreneur choisi pour gérer le projet. Le programme annuel de revêtement et les épargnes associées sont aussi considérés un succès par la ville d’Ottawa, l’équipe de design Robinson Consultants Inc. et Genivar, partenaires du programme depuis ses débuts en 2001. S Procédé de durcissement du revêtement 44 NASTT/GLSLA - Rapport Sans tranchée - 2009 Calculez les bénéfices de la technologie sans tranchée Michael Stimpson Rédacteur ’installation souterraine de tuyaux et de câbles par la méthode sans tranchée présente des avantages par rapport à la méthode conventionnelle qu’on utilise aujourd’hui. Les fabricants de l’équipement pour la réhabilitation et la construction souterraine le savent depuis longtemps, tout comme les professionnels de l’industrie qui utilisent cet équipement et pratiquent les techniques sans tranchée. L L’approche conventionelle selon laquelle le tuyau est mis sous terre en creusant une tranchée, en le plaçant à l’intérieur et en le recouvrant de terre veut dire qu’un montant considérable de terre doit être manipulé et déplacé, chose qui peut troubler la circulation quotidienne dans les centres urbains achalandés. Si le projet est de grande envergure, les perturbations peuvent être considérables. L’option sans tranchée nécessite moins d’excavation pour l’installation souterraine de tuyaux et de câbles. Moins d’excavation veut dire moins de dégâts, phénomène qui atténue l’impact environnemental. La construction sans tranchée gêne généralement moins la circulation ou même toute autre activité près du site de travail. Bien sûr, les promoteurs préconisent la solution sans tranchée dans les situations où l’excavation n’est pas pratique ou encore si le projet se trouve dans une zone écosensible. Un nouvel outil à leur disposition est lié aux inquiétudes croissantes du public au sujet de l’empreinte carbone du projet, une pollution qui contribue au réchauffement climatique selon les scientifiques. La question qu’on se pose est combien émet-on de gaz à effet de serre contenant le dioxyde de carbone pendant chacune des tâches effectuées dans un projet? L’empreinte carbone et le réchauffement climatique mènent la liste des enjeux de cette décennie, et presque toutes les juridictions principales élaborent présentement des politiques visant la réduction de ces émissions. Les entreprises américaines et canadiennes, par exemple, voient venir à l’horizon la mise en place de systèmes de plafonnement et échange.De plus, le gouvernement provincial de la Colombie-britannique a mandaté que toutes ses villes soient neutres en carbone par l’année 2012 -, qu’elles trouvent par exemple des façons de compenser pour leurs émissions de carbone afin que l’effet net sur l’atmosphère soit neutre. Le chapître de la C-B. de la North American Society for Trenchless Technology maintient que l’emploi de la technologie sans tranchée veut dire moins d’émissions de carbone que celles générées par les procédés typiques à ciel ouvert. David O’Sullivan, président sortant et membre du conseil de NASTT-BC et président de P.W. Trenchless Construction depuis 2000 déclare que l’emploi de méthodes sans tranchée pour un projet de remplacement de tuyau peut couper les émissions de carbone par un énorme pourcentage en comparaison à l’emploi de la méthode tranchée couverte. La différence peut atteindre 90% affirme O’Sullivan. Un élément important qui prouve que la technolo- NASTT/GLSLA - Rapport Sans tranchée - 2009 45 gie sans tranchée est plus écosensible que la méthode conventionnelle de tranchée à ciel ouvert est la quantité prodigieuse de carburant requise pour enlever, déplacer et replacer la terre dans l’opération conventionelle à tranchée couverte. Cette approche contient de nombreuses étapes, enlever la terre, couvrir la tranchée, déplacer la terre et en disposer, reprendre la terre et la remettre à sa place originale. C’est facile d’imaginer combien d’énergie est nécessaire pour effectuer le travail, énergie réalisée par la consommation de combustibles fossiles. De plus, une étude effectuée par l’université de Waterloo a démontré que les perturbations de la circulation causées par la construction le long des routes produisaient des émissions excessives de la part des véhicules automobiles. On a conclu que la construction sans tranchée éliminait la plus grosse partie du problème en réduisant les encombrements à la circulation. « La réduction des opérations tranchée à ciel ouvert réduit la quantité de terre déplacée à des sites de dépotoir à ciel ouvert et réduit aussi la reprise de matériaux par la suite pour remplir la tranchée, O’Sullivan a récemment déclaré dans un magazine de construction. Ceci réduit les émissions des camions. » et le chemisage, le réparage sur les lieux et l’injection de coulis.L’application peut aussi évaluer combien les solutions sans tranchée peuvent réduire les émissions de carbone. Le calculateur de carbone a été développé pour NASTT-BC par un étudiant en ingénierie de l’université de la Colombie-Britannique. Cet outil est disponible en ligne depuis janvier 2008. Depuis sa mise en service, son emploi inclut la production de données pour apuyer des propositions visant à obtenir du financement public pour des projets à faible taux d’émission de carbone. Le magazine Underground Construction a fait une sortie d’essai du calculateur de carbone en entrant les données nécessaires pour l’installation hypothétique de 1 000 pieds de tuyau à diamètre de 12 pouces sous de l’asphalte. Le calculateur de carbone a calculé qu’une construction conventionnelle à ciel ouvert produirait plus de 700 tonnes de CO2 alors qu’une intervention par l’entremise de techniques de tubage et éclatement en produirait dix fois moins. Peu importe ce que vous croyez du réchauffement climatique, il est important que l’industrie de la construction se soucie de son David O’Sullivan président de P.W. impact sur l’environnement, de Trenchless Construction son efficacité à la tâche et de son image auprès du public. Le site web NASTT-BC www.nastt-bc.org vous offre un outil pour calculer de combien on peut réduire les « Même si vous ne croyez pas à la réduction de carémissions de carbone produites au cours d’un projet bone comme concept et vous pensez que c’est une si on le mettait en oeuvre en employant la technolomachination du gouvernement, je crois que vous gie sans tranchée au lieu de la méthode conventionserez d’accord que nous devons réduire notre connelle à ciel ouvert. Le « calculateur de carbone » sommation d’énergie, disait O’Sullivan dans un articomme on l’appelle, est le premier outil en ligne de cle récent de Trenchless International Magazine. Si la sorte pour comparer la technologie sans tranchée nous sommes en mesure d’employer certaines méthà l’excavation traditionnelle. odes de construction qui peuvent réaliser de telles épargnes d’énergie tout en maintenant notre niveau En bref, voici comment fonctionne le calculateur de vie, alors nous devons changer. » de carbone: on entre les données de base du projet et on répond aux questions à propos de détails pertiO’Sullivan espère que la construction sans nents au projet : il évalue la taille de l’empreinte cartranchée deviendra « la méthode accéptée de conbone du projet en termes de tonnes de dioxyde de struction souterraine - pas seulement une possibilité carbone (CO2) émises. Le calculateur de carbone à envisager quand les conditions rendent l’opération évalue les émissions de carbone qui auraient lieu difficile. » Le calculateur de carbone assistera à la avec trois différentes sortes de construction sans tâche. S tranchée : le forage horizontal, le tubage/éclatement 46 NASTT/GLSLA - Rapport Sans tranchée - 2009 09.pdf 1 Lancement d’un Outil interactif d’aide à la décision pour le renouvellement des infrastructures souterraines 14/09/09 2:26 PM Isabel Tardif, Directrice, CERIU Note de l’éditeur : ructures: Il nous fait plaisir de vous re built on 15 years of experience 9 bec ructures ue présenter cette section en français au profit de nos membres francophones nombreux et nous voulons remercier les contributeurs et les commanditaires qui ont rendu cet effort possible ainsi que le travail par Traductions JMH Translations. Nous encourageons toutes les contributions à la section française du magazine dans les parutions à venir. Pour plus d’information s’il-vous-plaît contactez moi à [email protected] ou signalez le 204.255.6524. Paddy O’Toole, Éditeur, PTR Communications Inc. a réhabilitation des infrastructures souterraines représente un enjeu de taille pour les municipalités du Québec qui participeront au Programme de renouvellement des conduites d'eau potable et d'eaux usées (PRECO). Pour cette raison, le CERIU vient de lancer sur son site Internet (www.ceriu.qc.ca) un outil interactif d’aide à la décision pour la réhabilitation des infrastructures souterraines. L Réalisé par le CERIU avec l’appui des membres du Conseil permanent Infrastructures souterraines, cet outil s’adresse d’abord aux ingénieurs et techniciens municipaux qui cherchent à développer une meilleure connaissance des différentes techniques de renouvellement des conduites souterraines. Pour chaque réseau, cet outil interactif propose le type d’interventions adéquates ou possibles en fonction des déficiences et des situations observées. En raison de l’interactivité de l’outil, l’utilisateur pourra, en répondant aux questions posées sur les déficiences et les situations observées, suivre un cheminement qui l’aidera à poser un diagnostic sur l’état des conduites d’eau potable ou d’égout. Par la suite, étape par étape, l’utilisateur évoluera dans un arbre décisionnel qui l’amènera à se familiariser avec l’ensemble des possibilités qu’offrent les techniques de réhabilitation des conduites et ce, afin de sélectionner les techniques de réhabilitation qui répondent le mieux aux exigences de son projet de renouvellement. À la fin du processus, il pourra procéder à la révision complète du processus de prise de décision. Il est à souligner que chaque technique de réhabilitation proposée par le biais d’une fiche technique, précise l’objectif de l’utilisation, le procédé, les types de conduites ou d’ouvrages sur lesquels la technique s’applique de même que les conditions et limites d’application qui la caractérise. Rappelons l’utilité de ce nouvel outil qui cadre avec la volonté gouvernementale exprimée dans la Politique nationale de l’eau qui incite l’ensemble des municipalités à atteindre un taux d’utilisation des techniques de réhabilitation des réseaux de 25% par rapport au taux de remplacement. NASTT/GLSLA - Rapport Sans tranchée - 2009 47 48 NASTT/GLSLA - 2009 Trenchless Report Using New Technology to Locate Large Diameter Sewers and Avert Potential Disaster David Crowder, CET, R.V. Anderson Associates Limited Gerald Bauer, P.Eng., R.V. Anderson Associates Limited and John Scaife, P.GEO., Multiview Locates Inc. David Crowder he public generally does not realize that below the streets of large cities lay enormous labyrinths of large diameter sewer pipes. These large diameter trunk sewers serve as a city’s critical conduits to convey wastewater to sewage treatment plants. As old buildings are demolished to make room for new, larger buildings with deep foundations and multilevel underground parking garages, there is a real danger that these vital underground sewers can be damaged. One of the most pressing problems facing design engineers who are planning new structures is the lack of accurate records necessary to determine the location of these large sewers. Since most of the sewers were constructed decades ago, many constructed in tunnels, often the only information available is schematic representations or old sewer maps without current references. Furthermore, these large diameter sewers often have manholes spaced much further apart than those of smaller diameter sewers, which makes it difficult to interpolate an alignment and further complicates the location process. In some cases, the old sewer accesses are now covered over by a parking structure, building foundation, or are situ- T Accurate sewer locating prevents accidental damage during drilling ated in a location where any access is a challenge. Subsurface Utility Engineering (S.U.E.) is defined as a process used by engineers to certify the location of underground utilities by assigning quality levels to all gathered utility information. These quality levels range from Level A (physical exposure and visual confirmation) through to Level D (historic records search). This process can also be applied to determine the location of large diameter sewers underneath buildings in a large urban area. By reviewing secured utility information at each quality level a comprehensive understanding of the position of deep sewers is possible. NASTT/GLSLA - 2009 Trenchless Report 49 To physically determine the location of underground facilities, including deep sewers, typical methods include: • Vacuum Excavation; • Ground Penetrating Radar (GPR); and • Electromagnetic Field Detection Technology (EM). Vacuum Excavation uses suction to remove soil through a hose, exposing a buried utility or a sewer. These tools work extremely well for defining shallow (less than 5 metre) deep utilities, but have limitations for defining deep sewers since they can typically only remove material to depths of 7 metres. However, a more practical drawback is the inherent uncertainty that the excavation will be over the centre of the sewer. It may be necessary to advance several holes or a short trench to accurately locate an undefined sewer. These activities are time consuming, especially if the large diameter sewer has several bends throughout a building site or project area. Ground Penetrating Radar (GPR) is a method that emits pulsed high frequency radio waves into the ground and can map utilities and sewers by reflecting energy off these targets. However, the electrical properties of the ground typically absorb GPR energy (especially clay minerals) which reduces the exploration limit of any GPR system to a few metres, not ideal for mapping deep sewers. These systems also require direct access to flat ground, of which there may be limited availability in an urban streetscape environment. This method is also difficult to apply indoors due to the signal interference caused by reinforced concrete floors. Electromagnetic Field Detection (EM) is the most common method for conductive utility detection and can be used to locate open conduits or sewers by advancing a transmitting sonde through the target line. For locating deep, large diameter sewers this process can be achieved by walking a sonde (transmitter) along the top (or obvert) of the sewer while the position of the sonde is determined by a technician on the surface with a receiver. As the sonde is carried through the sewer, the centerline is established by the surface technician who will mark the ground with paint (outdoors) or tape (indoors). These points are surveyed to create an alignment, which can then be incorporated into the design drawings to show any potential conflicts with future building structures. Where large diameter sewers are not suitable for man entry due to high flow, lack of oxygen and 50 NASTT/GLSLA - 2009 Trenchless Report Sonde in pipe emits EM field to technician above who marks sewer location health and safety issues, or are slightly too small to walk through, then a robot can be used to transport a sonde down a sewer. This requires the robot to be modified in order to allow the sonde to be lifted up to the obvert of the pipe. For very large diameter sewers, this can be more challenging as the robot can become unstable. The other disadvantage is that you can only locate the centre line of the sewer. In some cases, when trying to confirm the actual location along a radius bend, it is important to locate both sides of sewer pipe walls. CASE STUDY: LOCATING A 100-YEAR-OLD SEWER R.V. Anderson Associates Limited (RVA) and multiVIEW Locates Inc. (multiVIEW) combined technical resources and expertise to accurately locate a 1.9 metre diameter, 6.21 metre deep brick sewer, beneath an existing building that was slated for demolition (where the distance between the entry manhole and the next downstream manhole was 800 m. RVA required the precise horizontal and vertical position of the sewer in order to assure that proposed caissons that were required to support a new building would not intersect with the existing sewer. This active sewer had to remain in service and had to be located before the City would approve the pending construction project. The first step in the SUE process is Level D or a records search. Since the sewer was built more than 100 years ago, very limited record information was available. There were no detailed record drawings and the sewer maps provided by the City showed the sewer’s general location without any current references. The Level C site reconnaissance found that the only access manhole was located in front of the subject property. It was further noted that this access was not simple because the manhole was nearly 6 metres deep and posed a safety hazard due to the access ladder’s poor condition. The project team determined, however, that a safe sewer entry was possible and contacted the owner for permission. For the Level B geophysical study, the project team chose electromagnetic field detection technology (EM) to locate the sewer, since a portion of the sewer was below an existing building, preventing GPR access. The on-site set-up took approximately 1.5 hours and included reviewing confined space entry (CSE) safety procedures before entry. A technician with a receiver unit stayed on the surface. Additional team members used portable tripod equipment and CSE procedures to lower personnel into the manhole. To protect against the poten- tial hazards of sewer gases, the technicians carried gas detectors and wore self-contained breathing apparatus. A calibration procedure was then completed to evaluate the effect of local signal interference, which would cause errors in depth approximations and the inferred sonde location signals to wander. The surface technician compared the signal from the sonde to the field measured depth of the sewer crown in the manhole. This calibration information was critical for the surface technician in order to accurately infer the subsequent positions of the sonde. The accuracy of the surface readings depends on the skill and experience of the technician in isolating the target electromagnetic field from all the spurious NASTT/GLSLA - 2009 Trenchless Report 51 findings with paint marks on the surface to clearly mark the sewer alignment. While tracing the sewer as it passed underneath the existing building, the alignment was marked indoors on the floor with tape. The entire alignment was then subsequently surveyed and incorporated into the design drawings. Once the alignment of the existing sewer was established, it was determined that there was a positional conflict with the existing brick sewer and the proposed position of the foundation caissons. The City of Toronto representatives requested an inspection after the builders drilled the caissons and before construction started to ensure that there was no structural damage. A SUE Level A visual inspection confirmed that no caissons penetrated the brick sewer. The locating of large diameter sewers requires using existing technology and applying them to suit the needs for the project. This project success was due to the partnership created between RVA and multiVIEW to accurately locate and prevent possible damage to this delicate brick sewer. The combination of RVA’s engineering strength and multiVIEW’s geophysical survey experience permitted the caissons to be installed while preserving the integrity of the 100 year-old sewer. S David Crowder using sonde in sewer pipe and secondary fields produced by underground facilities in an urban environment. The surface technician began confirming and evaluating the signals while personnel held the transmitting sonde at the crown of the pipe. Once the technician confirmed and calibrated the signal, the personnel inside the sewer proceeded along the sewer at intervals of five metres to accurately capture points along the radius bends. Radios do not work well underground, so a technician was stationed at the bottom of the manhole to serve as a communication link between those on the surface and those in the sewer. The surface technician was advised when the others reached each 5 metre interval or a bend in the sewer. To ensure that the bends were accurately located, the technician on the surface took several readings and annotated his 52 NASTT/GLSLA - 2009 Trenchless Report David Crowder, CET is the Manager of Field Services for R.V. Anderson Associates Limited ([email protected]). Gerald Bauer, P.Eng is the Branch Manager for the R.V. Anderson Associates Limited, Ottawa office ([email protected]). John E. Scaife, P.Geo. is the Director of Business Development for multiVIEW Locates Inc., a Mississauga based firm offering utility locate management, private locates, engineering locates and subsurface utility engineering (SUE) services. Infrastructure Environment Communities Facilities Providing trenchless technology services for industry and municipal infrastructure www.dillon.ca CAse sTUDY: City of Hamilton’s Three-Year CIPP Water Rehabilitation Program Michael Zantingh, Infrastructure Programming Technologist, City of Hamilton, Hamilton, Ontario, Canada INTRODUCTION The City of Hamilton has approximately 2,100 km of watermain. The majority of the water infrastructure is cast iron or ductile iron. Approximately one per cent of the watermain network requires replacement or rehabilitation each year. Annually, that amounts to 21 km of the system. In understanding the needs in the system, it would be very difficult to fund the renewal of 21 km of watermain using the traditional open cut technology. This issue required the City to expand its toolbox to find innovative and cost-effective strategies to renew its water infrastructure. By examining various product options in the industry, the City found that the CIPP technology offered an ideal solution to its water infrastructure needs. The City had experienced success in the past using the CIPP sewer lining product and foresaw the capability of the CIPP product to work well on its water system. Understanding that sewer and water systems are inherently different, the City felt it best to investigate the water CIPP product by implementing an in depth pilot study. Through its evaluation of the performance of the CIPP liner, the City found many benefits of using the product in its water system. The main benefit was extending the life of the asset. The relining of watermains would provide the City with a hybrid product and the ability to give deteriorated cast iron watermains new life. The lining also provided an opportunity to defer the replacement of the relined watermain by 40 to 50 years. The use of CIPP lining would also help in minimizing the impact to surrounding infrastructure by reducing the need for open cut replacement. PILOT STUDY To better understand AquaPipe® CIPP technology, the City of Hamilton conducted a pilot study in 2003. The study involved the selection of a site location based on set of criteria determined by the City. The two primary criteria included the length of a watermain run and its maintenance history, including breaks. The watermain had to have a high break history, which indicated that the watermain was most likely structurally deficient. Since the Aqua-Pipe® CIPP product claimed to be fully structural, it was imperative to choose a watermain that was in a deteriorated condition in order to quantify the ability of this product to eliminate or reduce breaks. West 2nd Street in Hamilton was ultimately chosen for the pilot study. In the preceding four years prior to 2002, the watermain on this street had five known breaks over approximately 1000 m of watermain, which was an ideal length and maintenance history for the test project. The City was able to remove the required samples for the first 500 m and leave the remaining 500 m undisturbed for future monitoring and testing. The work was carried out in the fall of 2003 and samples were sent to the University of Western Ontario (London, Ontario) and Queens University (Kingston, Ontario) for further testing. As part of the project, the City of Hamilton, University of Western Ontario, and Queens University signed a research agreement to carry out a three-year research review. The research involved a number of initiatives,including longevity testing of the liner within the host pipe. The research revealed positive results, which provided the City with reasonable confidence in the long-term performance of the Aqua-Pipe® CIPP product the City used. Furthermore, monitoring of the watermain lining under the pilot project in 2003 quantified an elimination of leaks caused from breaks in the cast iron. The pilot program found that Aqua-Pipe® CIPP is a fully structural product that will increase the service life of a watermain by 40 to 50 years. The installation process reduces the social cost and the impact to surrounding infrastructure and the product in most NASTT/GLSLA - 2009 Trenchless Report 53 cases provides a greater life cycle cost benefit. PROGRAM DEVELOPMENT Once the pilot project was completed, the City rolled out its structural lining rehabilitation program in 2005. Building on the success of the lining in 2003, the City developed a three-year term contract, modeled after the sewer lining contract. The sewer contract, an evaluated Request for Proposal, was designed to maintain low management costs, complete a large volume of work, minimize capital costs and hold the contractor accountable. The Basis of Selection of the contract is divided into two inde- Table 1 - Technical Evaluation Criteria criteria Ability to perform the work technical aspects evaluated - The proponent’s history carrying out the same or similar type and magnitude of work. - Includes time and budget management, knowledge of the City’s requirements & procedures, understanding of the contract standards & specifications, communication management etc. Financial Capability Staff Experience - The firm's financial stability including bonding capabilities. - The experience and ability of the specific staff that have been identified by the proponent to manage this type of work. Work Plan, Organization and Customer Service - The proponent’s ability to produce an effective work plan and organize themselves in such a way as to provide strong customer service to both City management and the general public. Material and Methodology - The proponent’s ability to provide a quality product with sound installation practices. - This includes QA/QC, operation, and corrective measure procedures along with detailed documentation on the products safety requirements, physical properties and proposed designs which all must meet the minimum requirements of the technical specifications described in the tender. Table 2 – Score Break Down criteria Ability to perform the work / Health and Safety Financial Capability Staff Experience Work Plan, Organization, Customer Service, Materials/Method Total Points Bid $ 54 evaluation Points maximum score Bid “a” 35 34 15 15 15 15 14 13 20 100 $ 14 90 $1,225,000 NASTT/GLSLA - 2009 Trenchless Report pendent phases. During the first phase, an evaluation team consisting of four Public Works staff members who independently performed a technical evaluation of each submission (see table 1 and 2 for more details). The City’s Purchasing Department retains the sealed bid price envelopes, as received from contractors, until the technical evaluations are completed. The second phase connects the technical evaluations with the bid price. A meeting is held with the evaluation team to compile the scores. The four technical scores from each member of the evaluation team are tallied and a consensus score is assigned to each submission. The contractor needs to obtain a minimum score in the evaluation of their proposals to move onto the next phase. If the minimum score is not obtained, the bid is discarded. Once this is complete, the bid envelopes are opened and the contract awarded to the lowest bidder achieving an acceptable evaluation score (See Table 1). Each criterion is weighted to achieve an overall score of 100 (See Table 2). The contract is designed to achieve four primary objectives: 1.Balance the cost of the work with the quality. 2.Move from the traditional project-based contract to a programbased contract 3.Allows the City to address issues that occur on a neighbourhood level. 4.Hold the Contractor accountable to its evaluated performance level, through annual reviews. In 2006, the City tendered its first three-year term contract and received one bid. The contractor passed the evaluation and the contract was awarded, work started in June 2006 and ended in late October 2006. Over the three years they were under contract with the City, 19 km of watermain were structurally lined in seven different neighbourhoods. LINING PROCESS The structural liner used by the City was Aquapipe, manufactured by Sanexen Environmental. The liner is a woven polyester liner made in two parts. The first part is the outer woven polyester jacket. The inner liner is the woven polyester liner with a Polymeric membrane fused to it. The Polymeric membrane ensures water tightness. The first step in the installation process is the locating of all buried infrastructure, which is the responsibility of the contactor. Once all the utilities are marked clearly, the contractor will lay a temporary bypass piping system in order to supply continuous water service to residents. Bypass is needed, as the rehabilitation process requires that the watermain be taken out of service. The bypass is tested to ensure water tightness and that it has been properly disinfected, similar to that of new watermain systems. Figure 1- Typical Road Set Up Once bacteria testing is completed and the bypass is cleared for use, the mains are shut down by City crews. The contractor identifies access locations and will then excavate the pits. The access pits are generally located at main intersections, valves, hydrants and tees, etc. Shoring is required to ensure safety for the crew while working in the access pits as defined by locate Health and Safety regulations. Access pits are generally located approximately 50-100 m apart. Figure 1 is a view of a typical access pit set up. Once the access pits have been installed, the preparation stage begins, with the watermains being opened up and dewatered. Crews start by scraping the mineral build up off the inside of the pipes. A CCTV inspection is conducted to ensure that the pipe is completely clean. When the inspection is complete and the watermain is clean, the operator will cap and record all the service main stops. The capping is done robotically from the inside of the watermain, and necessary to prevent the epoxy resin from migrating up the service main stop. If resin does migrate up the main stop, it causes a blockage of the service which will require extraction and replacement of the main stop. Upon completion of the preparation stage, the watermain is ready for the liner to be installed. In order for the liner to cure properly, the host pipe needs to be dry. This is achieved by removing excess water with a series of swabs passed though the host pipe. The epoxy resin impregnation of the polyester woven liner is completed on site with a refrigerated truck to ensure that there is adequate time to install the liner in the watermain. Once the liner is impregnated, it is pulled into the watermain via a winch for the adjacent access pit. As the impregnated liner comes off the back of the refrigerated truck, the liner goes though a series of rollers. These rollers squeeze the excess resin out and distribute the resin evenly within the polyester woven jacket. When the liner has been received in the joining exit pit, a swab is launched under water pressure through the liner. The swab is pushed though the liner in order to form the liner to the host pipe. Once the swab has reached the receiving pit, hot water is circulated through the pipe in order to cure the liner. Curing time for this product is approximately three hours however that will vary depending on the size of the host pipe and the resin volume. After the liner has cured, the reinstatement of the service connections begins. Reinstatement of service connections is completed via robotics from within the newly lined watermain. Crews operate the robotics to drill out the services removing both the polymeric woven liner and service plug installed during the preparation stage. The drills are operated with the use of a CCTV camera mounted to the drill skid. Services are identified by the protruding main stop and through the recorded information from the pre-lining inspection. Figure 2 displays the operator’s view of a watermain while reinstating a service. After all the services have been reinstated, the watermains are reconnected using traditional closure pieces. The lined watermains are then disinfected and bacteria testing completed, in order to put them back into service. The site is cleaned and final restoration is completed. Upon completion of the NASTT/GLSLA - 2009 Trenchless Report 55 Figure 2 – Service Reinstatement project, the contractor provides the City with both a pre and post CCTV inspection. The City reviews all videos to ensure the quality of the interior to the liner. CONCLUSION A CIPP product, once installed, provides a hybrid piping product, prolonging the life of the asset approximately 40 to 50 years. Use of a CIPP reduces the maintenance cost. Since the beginning of the project, City maintenance staff has begun to notice a reduction in breaks within the distribution network. We will continue to monitor breaks to see if this trend continues; however, it is still too early to provide any hard statistical data to support this observation. The City’s contractor enjoyed a positive working relationship with the City, which is a key component to the success of any project. As with any relatively new product, further refinement is required to improve the overall benefits of the CIPP. These refinements can only come from practise and a willingness to improve on the part of utility owners, installation contractors and product manufacturers. The City continues to work with all parties in the trenchless rehabilitation industry to improve the benefits of these types of products. S REFERENCES Allouche, E., Bainbridge, K., and Moore, I. (2005). Laboratory Examination of A Cured-In-Place Pressure Pipe Liner For Potable Water Distribution 56 NASTT/GLSLA - 2009 Trenchless Report Pipes, North American Society for Tranchless Technology, No-Dig Conference and Show, Paper D3-04. Auger Boring Through Hard Rock: Overcoming the Challenge ard rock is the true nemesis to the auger boring contractor. The evolution of auger boring expertise, and its increased recognition of being a more widely used and understood method of underground technology, has introduced disc cutter head product tooling. The disc cutter concept borrows, on a smaller diameter platform, the cutting method that large tunneling machines utilize to rotate, fracture, and remove rock chip spoils from the bore path. Manufacturers like American Augers are developing and seeing field proven results in their version of the disc cutter head. One example of creating success with man, machine, and technology is an August 2007 auger boring job in Doylestown, Pennsylvania through an unyielding rock formation. The contract in Doylestown, Pennsylvania called for the Case Boring Corporation from Gasport, New York, who was subcontracting through Henkels and McCoy, to install a 120 foot (37 m) long gas pipeline under a two-lane roadway. Confronting the span of the bore was a sandstone deposit that the disc cutter was more than capable of surmounting, as the engineering design is suitable for intrusive rock formations up to 25,000 PSI (1,724 bar). H “The AA (American Augers) disc cutter head was the exact right choice for the job. It was effective and productive in both solid and much fissured rock, the type of rock that can give a boring contractor fits with other types of tooling,” said Mark Case from Case Boring Corporation. The Case Boring crew created a 50 foot (15 m) long and 9 foot (3 m) deep shored pit, operating on 30 Rob Foster, American Augers feet of auger boring extension track, that would set the stage for either achieving success or create a project deficiency in less than ideal conditions. From the perspective of the contractor, the advantage to using a disc cutter head is that the unit is mounted directly to the product casing, which enhances cutter head stability and allows for longer cutter life. The individual cutters are manufactured with high strength steel that allow for increased working life, as during use they perform a rolling motion that creates no friction, and benefits the operator by maximizing performance in various geological formations and are designed to withstand the severe loading of mixed face conditions. Disc cutter heads have the ability to be industry wide contributors because they are compatible to any make or model of auger boring machine and auger section that is fitted with a 4 inch or 5 inch (102 or 127 mm) hex. Using a 1990 model of a 60-1200 auger boring machine and a brand new 36 inch (914 mm) diameter disc cutter head, both manufactured by American Augers, the Case Boring operator began the diligent effort of pushing the product through the sedimentary landscape at a steady rotational speed. Maintaining consistent speed in a slow, but optimum range of 17 – 25 RPM allows disc cutter heads to work through the bore at a pace that ensures a steady flow of the rock cuttings, and prevents any significant hindrance to the spoil return process. For this job, the spoils varied from a powdery dirt substance to finger nail clipping size remnants. NASTT/GLSLA - 2009 Trenchless Report 57 penetration of the rock wall. This practice is typical for most disc cutter head jobs, because the critical nature of the cutters first contact with the earthen embankment will create some vibration, which if not supported or monitored, could cause the line of the bore to be compromised. The excavator was withdrawn shortly after the entire disc cutter had disappeared into the formation, and the vibration ceased, as the head and the product casing was now shrouded in the compact composition of the earth, and the operators of the bore had settled the machine into a “sweet spot” that would allow them to steadily progress. The RPM rate must be balanced to coincide to the thrust pressure being produced by the auger boring machine. Throughout the total distance bored the auger boring crew had to keep a careful eye on the variable factors that influence the amount of thrust to apply including: PSI level of the rock being cut, total size of the bore, rate of spoil return, diameter of the cutting head, and overall machine torque output and speed. This bore maintained a variable output of 220,000 ft-lbs. of thrust. An excavator was also introduced, as the excavator bucket was placed on the product casing in close proximity of the disc cutter to apply pressure and aid in the stability of the cutter, as it made the initial 58 NASTT/GLSLA - 2009 Trenchless Report The bore was done at zero percent grade, but if maintaining line and grade was required the disc cutter is equipped with power assisted steering jacks, which promotes steering corrections that can be made with ease. In total, it took one and a half days to complete the bore. Not using the disc cutter would have made a traditional auger bore difficult and time consuming. “Using conventional product tooling this bore would have been possible, but we may have only been able to bore five to eight feet (1.5 – 2.4 m) per day,” said Jim Lee, an American Augers Field Service Technician who was present during the bore. “ I know from experience using a traditional rock cutting head in that type of sandstone would have required constant maintenance in replacing the carbide bullet tips every two or three feet (0.6 – 0.9 m).” Supporting Jim Lee’s remark, Mark Case commented, “Without American Augers.indd 1 the disc cutter the bores would have taken three times longer to complete, involving considerable retooling and time spent pulling and reinserting the auger. The head turned very easily, greatly reducing wear and tear on our auger string and drive train.” Auger boring and its associated equipment or tooling, such as disc cutter heads, are typically less expensive and reduce downtime more so than other methods, such as micro tunneling, and the conventional practice of open trenching. In neighborhoods, metropolitan zones, wetlands/waterways, and in infrastructure development (i.e. roads, railways, existing utility) areas auger boring creates less physical disruption and can save a considerable amount of expense on product installation, reduce restoration costs, and provide a tremendous amount of goodwill to the community and its inhabitants. Another down time limiting factor for disc cutter heads is that the large diameter of the head allows the head to retract from the face without moving the product casing. Having the cutting head be retractable also allows for cutter change and servicing that can be accomplished outside of the heading. Auger Boring itself is a test of both man and machine, but when those two factors are confronted with tough ground formations that can stress human emotions and mechanical muscle, the real test is how utilizing proven practices and today’s technology, such as disc cutter heads, can prevail in complicated situations. “The disc cutter head will allow us to make bores in a much more cost effective way than ever before. We will be able to entertain boring longer crossings than ever before due to the easy turning nature of the head and the unique steering advantages the head give us,” said Case. S NASTT/GLSLA - 2009 Trenchless Report 59 9/29/09 4:01 PM Structural Lining of Watermains in the City of Ottawa Returns to its Roots Todd Penfound, C.E.T., City of Ottawa & George Blow, P.Eng., Robinson Consultants Inc. BACKGROUND The City of Ottawa has been using structural lining since 2001 as a part of their ongoing watermain renewal program. In October of 2001 Ottawa became the first city in Ontario to have a new structural liner system installed in their water distribution system. The pilot project included the structural lining of 1.5 km of 152 mm cast iron watermain within the Crystal Beach sub-division in the west end of the city. Over the course of the past 8 years, close to 30 km of watermain has been lined in various neighborhoods throughout the city. This represents a small portion of the over 1,000 km of cast iron watermains in use in the City’s water distribution network, which includes over 2,500 km of watermains. In 2009, the annual lining program continued in the Lakeview area, a sub-division immediately adjacent to Crystal Beach. plaints. Regular flushing of the watermain was required in response to the frequent complaints from residents. The existing roads and sewers are all in good condition, with an estimated remaining life of over 20 years. These factors, in combination with the greatly reduced impact of trenchless construction on the daily lives of local residents, made this area an ideal candidate for trenchless rehabilitation. A fully structural cured-in-place pipe (CIPP) solution was selected for this project in order to prolong the life of the partially deteriorated host pipe. The requirements of the structural lining system included a design to meet the ASTM F1216 standard and an epoxy resin with a NSF Standard 61 approval. Project Area THE LAKEVIEW PROJECT In November of 2008, the City retained the Robinson Consultants Inc. team to evaluate the suitability of a trenchless solution and to provide design services for the rehabilitation of the watermains in the Lakeview Park area. The City of Ottawa uses various criteria in selecting areas where structural lining of watermains is undertaken. In the case of the Lakeview area there is 3.7 km of 40 year old cast iron watermain ranging in diameter from 150 mm to 305 mm. Older unlined cast iron watermains can develop internal buildup or tuberculation caused by internal corrosion that can lead to reduced hydraulic capacity and “red” water problems. As a result of this tuberculation, the Lakeview area had been the source of numerous watermain leaks and “red” water com- 60 NASTT/GLSLA - 2009 Trenchless Report Open Cut Construction During the design phase of the project, an open house was held at a local community center and was very well attended by local residents. Once the lining process had been explained to all in attendance there was overwhelming support among the local community for the project. This support continued throughout construction, and positive feedback from local Trenchless Construction Inverted Liner at Access Pit residents was provided on a regular basis because of the very limited disruption caused by excavation, dust and noise. The size of the project required that construction take place in three phases in order to limit the area requiring temporary water services. Once the temporary services were set up and tested, the watermain was isolated, cleaned, and a CCTV inspection was performed in order to verify the condition of the pipe and locate bends or reducers that could not be lined through. During the CCTV inspection, plugs were inserted into the service connections to allow for later reinstatement by preventing resin from migrating into and blocking the service connections. position through the host pipe. The use of inversion lining on this project represented the first use of this method during the eight years of the lining program in Ottawa, as all previous lining projects had taken place using the pull-in method. Once the liner was in place between each access pit, the curing process was begun by injecting steam into the lined pipe. The process of heat curing took approximately three hours with the temperature increasing up to approximately 90 degrees Celsius over a one hour period followed by a two and a half hour setting or curing period. Individual lining sections were completed in lengths of between 75 m and 160 m. Once the new CIPP liner had cured, a hydrostatic pressure test was completed to ensure a leak-free final product. Following successful completion of the pressure test, the service connections were reinstated from inside the pipe using a remote controlled robotic cutting tool. The robotic tool cuts through the liner and removes the plug that was inserted during the CCTV inspection stage so that service connections are reinstated without additional excavations. In addition to the lining portion of work, all existing valves and hydrants were replaced. The project included the addition of valves at certain locations in order to meet the current 300 m spacing design requirements of the City of Ottawa. Additional fire hydrants were also installed at closer intervals in order to meet the requirements of the current fire protection standards of 110-125 m spacing where the existing spacing in some areas was as much as 310 m. New magnesium anodes were also installed in all excavations to provide corrosion protection to the new valves and hydrants as well as external corrosion protection to the host pipe. Wet Out Procedure The lining procedure includes liner impregnation with epoxy resin, also known as the “wet out” procedure, insertion of the liner into the host pipe, and steam curing of the liner. The wet out procedure occurred on site and involved the impregnation of the epoxy resin into the 2 ply felt liner with fiberglass reinforcement. Insertion of the liner took place by pushing the liner with compressed air in an inverted BENEFITS OF STRUCTURAL LINING The rehabilitation of the watermains in Lakeview has been estimated to have saved over $1.5M, which represents an approximate 40% cost savings over traditional open cut excavation. Taking into consideraNASTT/GLSLA - 2009 Trenchless Report 61 Robotic Tool Reinstating Service Connection tion the length of watermains that have been rehabilitated in the City of Ottawa since 2001, the total cost savings of the annual lining program are estimated to be well in excess of $10,000,000. In addition to both the capital and life cycle cost savings, the reduced disruption to the water customers and the community in general represents a significant benefit to the use of trenchless rehabilitation methods where circumstances allow. Other benefits of the structural lining program include reduced construction durations, reduced impact on adjacent pavement structure and other utilities, Liner Heat Curing Process 62 NASTT/GLSLA - 2009 Trenchless Report improved water flow by a reduction in the internal pipe friction, and a fully structural and corrosion resistant watermain with an expected remaining life of over 40 years. While the Lakeview project will be continuing into the spring of 2010, the project has been considered a success thanks to the cooperation of all parties involved, including Aqua Rehab who was the successful contractor for the project. The annual lining program and related cost savings is also considered to be a success by the City of Ottawa, the consultant design team of Robinson Consultants Inc., and Genivar, who have been involved as partners in this program since the beginning in 2001. S PROVIDING WATERWORKS UTILITIES WITH WHAT THEY WANT: hDD InsTAllATIon WITh FAMIlIAr pIpe MATerIAls Richard Botteicher, PE, Senior Products Engineer, Underground Solutions. Inc. OVERVIEW As water and wastewater utilities forge ahead with rehabilitating and expanding aging infrastructure, they are increasingly turning to trenchless installation methods to reduce cost and minimize disruption to local communities. Horizontal directional drilling (HDD) continues to grow in acceptance as more waterworks utilities gain experience with the practice and the number of skilled HDD contractors available to perform the work, which continues to expand. At the same time, pipe material choices in water and wastewater systems have remained fixed. System owners and operators would generally prefer to use the same materials for HDD projects that they use in the rest of their systems. Consequently, when steel and high density polyethylene pipe are used, they are often considered ‘specialized’ products for many waterworks utilities. Today, the number of pipe products that may be installed by HDD are growing, and bridging the gap between the requirements of the installation methodology and the final product and compatibility of that product with existing systems. becoming more adept when it comes to HDD projects. Advancements in steering technology and drilling equipment have improved the accuracy and adaptability of HDD in varying strata and expanded the scope of installed projects subject to HDD installation. HDD waterworks projects have gotten longer, larger, and greater in scope for varied geologies and site constraints. HDD TRENDS Recent surveys of utilities and engineering firms throughout North America have confirmed the growing adoption of trenchless installation practices. (12th Annual Municipal Survey, Underground Construction, Feb. 2009) In many parts of North America HDD has closed the installation cost gap versus direct bury, leading many utilities and design engineers to contemplate some element of HDD during the design phase of their pipe projects. HDD installations include such common applications as potable water, sewer force main, reclaimed water, and gravity sewer pipe projects. Of course, HDD is particularly well suited for difficult areas, like under rivers or major highways, or highly urbanized and congested utility corridors where directional drilling is viewed as a necessity. Likewise, the construction industry has responded to the increase in demand for HDD installations with more experienced and well versed drilling contractors and construction firms. Design professionals are also PIPE MATERIAL TRENDS Pipe market statistics clearly indicate that today’s water and wastewater utilities prefer to use polyvinyl chloride pipe (PVC), pre-stressed concrete, steel cylinder pipe (PCCP), and/or ductile iron pipe (DIP) for the vast majority of their new pipe installations. These three pipe products dominate the new pipe market in the Great Lakes, St. Lawrence and Atlantic region, as well as throughout the US and Canada. The conventional means used to join all three of these products is through the use of unrestrained, bell-and-spigot ends and elastomeric gasket seals. Unfortunately, when it comes to HDD installations, the lack of restraint and severely limited axial flexibility (ability to bend) with such joints precludes them from being used. In order to overcome these limitations new and innovative technologies and techniques needed to be developed. According to the Ductile Iron Pipe Research Association (DIPRA), the key for DIP was the development of flexible restrained joints. Allowable joint Fig. 1 – HDD installation with layout shown NASTT/GLSLA - 2009 Trenchless Report 63 deflections range from 3 to 5 degrees, depending on the specific product. (HDD/1-06, DIPRA) Gripping push-on joint gaskets that utilize locking stainlesssteel teeth segments are not recommended for HDD installations. Joint deflections or relative rotation between two pipe sections during installation with these types of restrained joint gaskets can result in leakage or possible joint separation. (HDD/1-06, DIPRA) For PVC pipe the HDD-friendly, restrained joint options include heat-fused (Fusible PVC™ pipe, 4”36”) and grooved-spline PVC couplers (4”-16”). Allowable joint deflections for grooved-spline couplers range from 3.8 degrees for 12-inch pipe to 11.5 degrees for 4-inch pipe. For Fusible PVC™ pipe, the minimum bending radius equals 250 times the pipe outside diameter. PVC™ pipe can be more easily connected to predominantly PVC and DIP systems, and can be maintained without the need for specialized parts, labor or connections. The high tensile strength of Fusible PVC™ pipe in combination with the full-strength of the fused joint, smaller outside diameter, and lower weight per length allows for longer pipe pulls, which means fewer pits need to be dug. Fewer pits reduce energy consumption, environmental damage, and rehabilitation costs. Fusible PVC™ pipe enabled the Beaufort Jasper Water and Sewer Authority to contract with the Mears Group who successfully installed 5,120 linear feet in a single insertion -- the longest single HDD pull of thermoplastic pipe in history -- beneath the Beaufort River in South Carolina. USING FUSIBLE PVC™ PIPE FOR HDD INSTALLATIONS The efficiency of a thermally fused pipe results from the uncompromised exterior and interior pipe diameter. The absence of substantial external protrusions, which come with bell-end pipes or restraint couplings, greatly reduces drag. This facilitates Fusible PVC™ pipe being pulled into HDD alignments and eliminates the need to enlarge the bore-hole to accommodate such external protrusions. Fig. 3 – Fusible PVC™ pipe during insertion under the Beaufort River for the Beaufort Jasper Water and Sewer Authority. CONCLUSION Thanks in large part to the continued evolution of pipeline materials and HDD equipment, the HDD installation process continues to gain wide acceptance in the water and wastewater industries. Pipe materials, like Fusible PVC™ pipe, that combine a common material in the waterworks market and a joining methodology that is well suited for installation via tension, are leading the way to open up more opportunities for HDD in the waterworks industry. S Fig. 2 – Fusible PVC™ pipe low profile restrained joint With more than one million feet installed by HDD to date, in sizes ranging from 4” to 30” nominal diameters, Fusible PVC™ pipe has shown itself to be a proven material for HDD installation of water and wastewater, pressure and non-pressure pipe infrastructure. Fusible PVC™ pipe provides a tensile strength and flexibility for HDD installations that allows it to fill the gap between the earlier HDD pipe materials, steel (higher strength, longer bending radius) and high density polyethylene (lower strength, shorter bending radius). Moreover, Fusible 64 NASTT/GLSLA - 2009 Trenchless Report Largest independent coater serving the CIPP industry in North America PU,PVC,PP,PE Vertically Integrated or Tolling Contact: Bob Collins Technical Representative [email protected] PH: 819-346-5281 ext 222 CELL: 819-446-1805 Go Trenchless with PVC TM z Available in CIOD & IPS sizes 4" to 36" z Achieves higher flow rates z Connects directly to existing PVC systems for material consistency z Use standard CIOD or IPS fittings IPEX has introduced the new Fusible Brute and Fusible Series PVC pipe for HDD and other trenchless applications. While other thermoplastic materials have been fused routinely, our patented fusion process incorporates a proprietary PVC formulation providing the only available method of installing a continuous, monolithic, fully restrained PVC pipe system. Fusible Brute CIOD and Fusible Series IPS PVC pipe can be used for both pressure and non-pressure applications in the water and sewer industries. Tough Products for Tough Environments ® Canada Toll Free: 1-866-473-9462 s w w w. i p e x i n c . c o m Swagelining: HDPE Rehabilitation System for Large Diameter Pressure Pipelines Todd Grafenauer, AJM Pipelines In the 1970’s, British Gas began the research, development and implementation of many of the trenchless technologies that are in use today. They did so out of necessity to replace and rehabilitate their own pressure distribution system with the criteria of cutting costs and increasing efficiency. The two most well known methods, which now carry a history in excess of over 30 years, are pipe bursting and Swagelining. The success of both methods is due in large part to the existing utility path being followed. By using the existing alignment, easement issues, environmental factors and utility relocates are eliminated. This will speed project delivery and can prove cost effective as design costs will be reduced. During construction, cost reduction and efficiency are also realized. Restoration is kept to a minimum as only surgical excavations are required and production rates typically far outpace that of traditional replacement. Static pipe bursting has seen tremendous growth in North America to replace pressure pipelines such as water and force mains. The method has been credited as the only trenchless method in which increasing the size of the main is possible, while still following the existing utility path. The most common static pipe bursting projects are for the replacement of smaller diameter mains, between the sizes of 2” (50mm) through 16” (400mm) in diameter. While the method can be used to replace larger diameter pipelines, the smaller size mains have been deemed most appropriate from a feasibility and cost standpoint. Upsizing is also typically a requirement of undersized mains, such as using pre-chlorinated pipe bursting to replace 6” (150mm) potable water main with a new 8” (200mm) main to meet fire flow standards. Swagelining has also seen tremendous growth around the world to replace and rehabilitate pressure pipelines such as water, sewer, gas, oil, mining, salt water injection lines and off shore applications. The most common Swagelining projects are for the replacement of larger diameter pressure pipelines 66 NASTT/GLSLA - 2009 Trenchless Report from 16” (400mm) to 48” (1200mm) in diameter. While the method can be used to replace smaller diameter pipelines down to 4” (100mm) in diameter, the larger size mains have been regarded most feasible. SWAGELINING OVERVIEW Like the static pipe bursting process, Swagelining involves installing a new HDPE pipe. However the existing host pipe is not impacted while the new pipe is installed. Swagelining allows a new, tight-fitting high density polyethylene (HDPE) pipe to be pulled inside existing pressure pipelines. The Swagelining system uses HDPE pipe which has an outside diameter (O.D.) slightly larger than the inside diameter (I.D.) of the host pipe. After sections of HDPE pipe are butt-fused together to form a continuous pipe slightly longer than the pipe to be installed, the HDPE pipe is pulled through a reduction die to temporarily reduce its diameter immediately before entering the host pipe. This allows the HDPE to be easily pulled through the original pipeline. After the new pipe has been pulled completely through the host pipe, the pulling force is removed. This allows the HDPE to return naturally toward its original diameter until it presses tightly against the inside wall of the host pipe, eliminating all annual space. The tight fitting HDPE results in a flow capacity close to the original pipeline design, and in many cases an increase in flow due to the smooth wall characteristics of the new HDPE. Swagelining is suitable for the rehabilitation of all types of pressure pipe in pipe sizes ranging from 4” (100mm) up to 48” (1200mm), and in pipe lengths up to 3,000 feet (1,000 meters) in a single pull. This method can be used to install fully structural pipe such as PE 4710 DR 11 (200 psi) or thin wall liners such as PE 4710 DR 46 (30 psi) depending on the condition of the host pipe. SLIP LINING VS. SWAGELINING The Swagelining process has resemblance to its closet cousin: slip lining. The process of slip lining involves inserting a new smaller pipe, typically HDPE, inside an existing host pipe. The O.D of the HDPE selected is typically 10% to 15% smaller than the I.D. of the host pipe. This is a requirement to be able to allow the contractor to easily pull the new pipe through the host pipe. The annual space is then typically filled with grout. As slip lining will ultimately reduce flow rates, many projects cannot afford to deliver a reduced capacity in times when communities continue to grow and demand continues to increase. Many engineers have deemed this requirement as the sole factor to not moving forward with slip lining. Swagelining has come to the Swagelining Process Figure 1: At the job site, sections of HDPE are butt fused together to form a single, jointless pipe. Figure 4: Just before the HDPE enters the host pipe, its diameter is temporarily reduced. The HDPE is reduced through the Swagelining process by up to 12%. The reduction die ensures that the pipe has no distortion, as it remains evenly smooth around the entire circumference. Figure 2: The host pipe undergoes preparation by cleaning and camera inspection. Figure 5: Rods are removed from the exit pit as the new pipe is pulled into place. Figure 3: HDPE pipe enters insertion pit. Figure 6: After the HDPE has been pulled through the entire pipeline, the pulling force is removed and the HDPE will naturally expand back to its original diameter. NASTT/GLSLA - 2009 Trenchless Report 67 forefront to meet the needs of projects to deliver the same flow rates as the existing main, and in many cases an increase in flow. While Swagelining also involves inserting a new HDPE pipe, the O.D. of the HDPE selected is slightly larger than the I.D. of the host pipe. Immediately before the HDPE is pulled into the host pipe, it passes through the swage die, more commonly referred to as a reduction die. This temporarily reduces the diameter of the new pipe by 8% to 12%. The temporary reduction allows the contractor to easily pull the new HDPE through the host pipe. After the pipe has been pulled through the host pipe, the pulling force is removed and the HDPE naturally expands back to its original diameter, fitting tightly against the host pipe. As no annular space remains, grouting is not required. The result is a new HDPE main which delivers the same or an increase in flow due to the C-factor of the new HDPE as the friction/head loss is eliminated from tuberculation and other deterioration issues. Energy savings from pumping/delivering through the new main is also realized. Engineering manuals typically designate a C-factor of 150 when designing a pipeline system with HDPE, which will also remain constant throughout the lifetime of the system. 68 NASTT/GLSLA - 2009 Trenchless Report AJM PIPELINES The Swagelining process has seen its market share expand in South America, Europe, Africa, China, Australia and Russia with over 745 miles (1200 km) of successful installations. As large diameter pressure pipelines come to the end of their life expectancy in North America, trenchless methods such as Swagelining are being implemented. AJM Pipelines has recently been granted license holder for the Swagelining process in North America. Many of AJM Pipelines key personnel have worked extensively with Swagelining projects across the globe, including many tracing their roots back to British Gas when the technology was first developed. Services that the company offers include upfront consultation, design and education on the feasibility of Swagelining projects, to the installation and completion of projects. The Swagelining process affords federal, municipal and private markets the opportunity to replace or rehabilitate their large diameter pressure pipelines in a manner that is environmentally friendly, while delivering a new design life on a system which may last throughout the next century. As infrastructure carries commodities that are essential to life, finding the right solutions to address aging infrastructure is critical. S #&$"64&:0631*1&-*/& #6%(&5/&&%4 503&"$)"4'"3"4063&26*1.&/5 "TMFBEFSTJO)PSJ[POUBM%JSFDUJPOBM%SJMMJOHXFCFMJFWFUIBURVBMJUZBOEIJHIFSUFDIOJDBM TUBOEBSETTIPVMEOµUDPNFBUBTUFFQQSJDF5IBUµTXIZTJODFXFµWFCFFOQVTIJOH UIFCPVOEBSJFTPGESJMMJOHBDIJFWFNFOUXIJMFPQFSBUJOHPOUIFTBNFQSJDJOHMFWFMBT PVSDPNQFUJUPST"OEXJUIPVSQSPWFOUSBDLSFDPSEZPVDBOSFTUBTTVSFELOPXJOHUIBU ZPVSQSPKFDUJTJOUIFSJHIUIBOET (PJOHUP(SFBUFS-FOHUIT 5. XXXUIFDSPTTJOHDPNQBOZDPN NASTT/GLSLA - 2009 Trenchless Report CrossingCo-HalfPageAd.indd 1 69 1/13/09 12:05:22 PM Index to Advertisers InDex To ADVerTIsers AH McElroy Sales & Service (Canada) Ltd. 13 AJM Pipelines 66 American Augers, Inc. 59 AVERTEX Utility Solutions Inc. 24 Beckwith Bemis Inc. 64 Channeline International Ltd. CIMA+ 8 41 Clean Water Works Inc. OBC The Crossing Company 69 CUES Canada 69 Delcan Water 32 Dillon Consulting Ltd. 52 Genivar 26, 38 HDD Rotary Sales LLC Horizontal Technology Inc. 20 4 IPEX Inc. 65 Liquiforce Services (Ontario) Inc. IFC Logiball Inc. 58 Melfred Borzall Inc. PipeMedic by QuakeWrap 3 IBC Pure Technologies 18, 34 Ratech Electronics 68 Robinson Consultants Inc. 44, 62 RV Anderson Associates Limited 68 Sanexen Aqua Pipe 51 Stantec Consulting Ltd. 56 Trenchless Design Engineering Ltd. 12 Veolia ES Canada Industrial Services Inc. please support the advertisers who have made this publication possible 70 NASTT/GLSLA - 2009 Trenchless Report 7 NASTT/GLSLA - 2009 Trenchless Report 71 Canada’s Own THE WAY IS CLEAR ™ t Watermain Swabbing t Hydro Vacuum Excavation t Sewer & Watermain Cleaning t CCTV Inspection of Sewer & Watermain t Cured-In-Place-Pipe Lining and Spot Repairs t Grouting, Test and Seal Joints, Manholes & Services Integrated Pipeline Rehabilitation Through State-of-the-art “No-Dig” Trenchless Technology 72 NASTT/GLSLA - 2009 Trenchless Report Call 613-745-2444 Toll Free 1-866-695-0155 www.cleanwaterworks.com John D. Brule, President and CEO