medal of honor underground

Transcription

medal of honor underground
2
NASTT/GLSLA - 2009 Trenchless Report
BUYOUR
MUSCLE,
CC-01X4-BLOCK
BE
11 3/4"
WH
WH
15 5/8"
BE
WH
WH
5"
BE
WH
WH
WH
BE
GET THE
8"
10 1/4"
BRAINS
FREE.
FOR
AT MELFRED BORZALL, OUR EXPERIENCE
IS BEHIND YOU EVERY STEP OF THE WAY.
Looking to increase your HDD I.Q.? At Melfred Borzall, we may be known for inspiring
fear into even the toughest ground conditions. But our reputation all comes down to
our years of engineering know-how and on-the-job experience. Sure, we offer the most
quality reamers, bits and rods in the industry. But perhaps more importantly, every
one of our tools is backed by our patented customer service. So when you work with
Melfred Borzall, you can rest assured knowing you can get the job done fast, easy
and with our team of pros behind you every step of the way. For more information,
give us a call at 1-800-558-7500 (outside the U.S. 1-805-614-4344) or visit
www.melfredborzall.com. And let us flex our biggest muscles for you. Our brains.
©2009 Melfred Borzall, Inc. 2712 Airpark Drive, Santa Maria, CA 93455
Nothing bores like a Borzall
4
NASTT/GLSLA - 2009 Trenchless Report
Table of Contents
north american society for trenchless technology
Great Lakes, St. Lawrence & Atlantic (GLSLA) Chapter
Chapitre des Grands Lacs, du Saint-Laurent et de l’Atlantique
2009 TrenChless reporT
Word From the Chair/ Mot de Président du GLSLA – Isabel Tardif
6
Trenchless Triumphs in Toronto – Mike Willmets
8
From the NASTT Chairman/Mot du Président de NASTT – Chris Brahler
9
NASTT/GLSLA Board of Directors
10
NASTT/GLSLA Calendar of Events
14
Pure Technologies Takes a Closer Look – Michael Stimpson
16
2009 International No-Dig Show A Record- Breaking Success – Angela Ghosh
19
City of Hamilton and GLSLA Host Japan Society of Trenchless Technology – Kevin Bainbridge
21
NASTT’s No-Dig Show Heads to Chicago in 2010 – Mark Hallett
22
The Importance of Numbers – Piero Salvo
25
Calculate the Benefits of Going Trenchless – Michael Stimpson
27
Balfour Sewer Rehabilitation – Alternative Project Delivery Process – Ashley Rammeloo, Kim Lewis, and Jim Breschuk
29
Triomphe de la technologie sans tranchée à Toronto – Mike Willmets
32
Pure jette un coup d’oeil attentif – Michael Stimpson
33
La foire No-Dig met le cap sur Chicago en 2010 – Mark Hallett
36
Le CERIU présent à l’International No-Dig 2009 de Toronto – Isabel Tardif
38
L’importance des chiffres – Piero Salvo
39
Nouvelles fiches techniques en infrastructures souterraines – Isabel Tardif
41
Le revêtement structurel de conduites maîtresses dans la ville d’Ottawa retourne à ses racines – Todd Penfound & George Blow
42
Calculez les bénéfices de la technologie sans tranchée – Michael Stimpson
45
Lancement d’un Outil interactif d’aide à la décision pour le renouvellement des infrastructures souterraines – Isabel Tardif
47
Using New Technology to Locate Large Diameter Sewers and Avert Potential Disaster – David Crowder, Gerald Bauer, & John Scaife
49
Hamilton’s Three-Year CIPP Water Rehabilitation Program – Michael Zantingh
53
Auger Boring Through Hard Rock: Overcoming the Challenge – Rob Foster
57
Structural Lining of Watermains in The City of Ottawa Returns to its Roots – Todd Penfound & George Blow
60
Providing Waterworks Utilities with What They Want – Richard Botteicher
63
Swagelining: HDPE Rehabilitation System for Large Diameter Pressure Pipelines – Todd Grafenauer
66
Published by:
Managing Partner and Editor
Paddy o’toole
204.255.6524
[email protected]
COMMUNICATIONS INC.
Unit 1 – 73 fontaine crescent
Winnipeg, manitoba
canada r2J 2h7
© Copyright 2009 PTR Communications Inc. All rights
reserved. The contents of this publication may not be
reproduced by any means, in whole or in part, without
the express written permission of the Publisher.
Printed in Canada 10/09
Advertising Sales
andrew Pattison
204.275.6946
[email protected]
Layout & Design
lunch Pail Productions
204.237.6611
[email protected]
While every effort has been made to ensure
the accuracy of the information contained
herein and the reliability of the sources, the
Publisher in no way guarantees or warrants
the information herein, and is not responsible
for errors, omissions, or statements made by
advertisers. Opinions or recommendations
made by contributors or advertisers are not
necessarily those of PTR Communications
Inc., its officers or employees.
Publications mail agreement #41901514
Return undeliverable Canadian addresses to:
PTR Communications Inc.
Unit 1 - 73 Fontaine Cres., Winnipeg, Manitoba
Canada R2J 2H7
Email: [email protected]
NASTT/GLSLA - 2009 Trenchless Report
5
Word from the Chair
Isabel Tardif
Since the last issue, the Great
Lakes, St-Lawrence, and Atlantic
Chapter has been very involved in
helping to promote trenchless technologies!
As you may have noticed, we now
have a new magazine title known as
the “Trenchless Report” and a new
Chapter logo to symbolize our large
Chapter. Also, we now have a new
website for all of our members at the
following address: www.glsla.ca.
Elections were held this past summer, and it is with great pleasure
that I can address you as the new
GLSLA Chair. I would like to per-
sonally congratulate the new
GLSLA Board Members, which are
introduced to you on page 10. I can
assure you that the board members
that you have elected are dynamic
and proactive volunteers, willing to
take new challenges and to promote
trenchless technologies.
We would like to thank the
trenchless community located in
our Chapter who stepped up to help
make the International No-Dig
Show 2009 in Toronto such a success last March. The success of the
show was a reflection of your attendance and participation at the conferences, exhibit hall and training
courses. Special thanks go to the
GLSLA Board Members who continue to volunteer to give their time,
effort, and involvement at the
Chapter booth during the show. I
would also like to emphasize the
participation of the GLSLA Students
Chapters, who attended in large
numbers, and with the hope that
they can continue their interest and
become our next generation of
trenchless professionals.
I would like to thank the City of
Hamilton for taking the time to
host a workshop and jobsite tour for
the Japanese Society for Trenchless
Technology (JSTT). The event was
quite successful. To find out more
please read the article on page 21.
Other upcoming events that we are
looking forward to seeing you are:
1) INFRA 2009 – November 16-18,
2009 in Mont-Tremblant,
Quebec
2) Atlantic Canada ACWWA –
October 18-20, 2009 in Halifax,
Nova-Scotia
3) No-Dig Show 2010 – May 2-7,
2010 in Chicago, Illinois
4) CATT 2010 Trenchless Road
Show – June 9-10, 2010 in
Mississauga, Ontario
We welcome you to get involved,
participate and become members of
the GLSLA Chapter!
Mot de président du GlslA
Depuis la dernière parution, le
chapitre des Grands-Lacs, du SaintLaurent et de l’Atlantique (GLSLA) a
travaillé sans relâche pour faire la
promotion des techniques sans
tranchée.
Vous avez pu remarquer que le
magazine s’intitule maintenant
Trenchless Report et que nous avons
un nouveau logo pour identifier le
chapitre. Nous avons conçu un
nouveau site Web et nous vous invitons à le consulter à l’adresse suivante : www. glsla.ca.
Des élections ont eu lieu cet été et
il me fait plaisir de m’adresser à
vous à titre de présidente du GLSLA.
J’en profite pour féliciter personnellement tous les nouveaux membres du comité qui vous seront
présentés dans le page 10. Je peux
vous assurer que ces membres que
vous avez élus sont des bénévoles
dynamiques et proactifs prêts à
aborder les nouveaux défis et à faire
la promotion des techniques sans
6
tranchées.
J’aimerais remercier les membres
de la communauté sans tranchées
située dans notre chapitre qui, grâce
à leur participation, ont fait de
l’International No-Dig Show 2009 à
Toronto en mars dernier un véritable succès qui s’est reflété par votre
présence et votre participation tant
aux conférences, expositions,
qu’aux cours de formation. Je tiens
à souligner particulièrement l’implication des membres du comité
du GLSLA qui ont assuré une permanence au kiosque du chapitre
pendant la conférence. J’aimerais
aussi noter la présence des chapitres
étudiants du GLSLA qui ont participé en grand nombre. Je formule
le souhait que cet intérêt soit toujours présent, car ils sont notre
prochaine génération de professionnels en technique sans tranchées.
Pour l’intérêt de nos membres
francophones, nous annonçons
avec plaisir la parution d’une nou-
NASTT/GLSLA - 2009 Trenchless Report
velle section en français, des pages
32 à 47 inclusivement.
J’aimerais aussi remercier la ville
de Hamilton qui a été l’hôte d’un
atelier et d’une visite de chantier
pour la délégation japonaise
Japanese Society for Trenchless
Technology. L’événement fut un
succès et pour en savoir plus, consultez l’article à la page 21.
Voici d’autres événements auxquels nous vous invitons à participer :
1) INFRA 2009 – 16 au18 novembre
2009 à Mont-Tremblant, Québec
2) Atlantic Canada ACWWA – 18
au 20 octobre 2009 à Halifax,
Nouvelle-Écosse
3) No-Dig Show 2010 – 2 au 7 mai
2010 à Chicago, Illinois
4) CATT 2010 Trenchless Road
Show – 9 et 10 juin 2010 à
Mississauga, Ontario
Nous vous encourageons à vous
impliquer, à participer et à devenir
membre du GLSLA.
Trenchless Triumphs in Toronto
Mike Willmets, Executive Director, NASTT
If you’re committed to making
smart decisions for underground
infrastructure, it’s a pretty good bet
that you attended the 2009
International No-Dig Show in
Toronto, Canada from March 29th
to April 3rd. Over 1,900 people
from 43 countries certainly thought
it was the right thing to do and it
looks like the No-Dig Show really
does the right thing by “helping
you make smart decisions even
smarter”!
This was the first International
No-Dig ever to be presented in
Canada, and NASTT’s fourth in conjunction with our co-hosts, the
International Society for Trenchless
Technology. To the credit of the
2009 Program Committee, 140
peer-reviewed technical papers were
presented, the most ever for a NoDig Show. Our industry exhibitors
were in full force too as the
Sheraton Centre exhibit halls were
completely sold-out representing
124 companies, many of whom
were using this event to launch new
trenchless products. Many thanks
to our premium level sponsors and
exhibitors for their welcomed support and generosity. For those with
an appetite for trenchless training,
all six of the NASTT Good Practices
courses were presented for the first
time under one roof and very well
attended. Special thanks to our
excellent volunteer instructors!
Undoubtedly, the Toronto show
was a milestone event for NASTT,
not only because we broke all our
attendance and sponsorship records
but, because this occurred during a
very challenging economic period.
We have all developed a new attitude towards thriftiness, and for the
8
NASTT No-Dig Show to receive the
Trenchless industry’s stamp of
approval is perhaps recognition of
top notch quality and the best value
for your ticket price. Especially
commendable was the record setting contributions at the 8th
Annual Educational Fund Auction.
Helping our students is the best
investment we could ever make.
Thank you for your generosity. I am
also proud to point out that for the
first time, Canadian attendance outweighed all others and undoubtedly
was a major factor in our success.
Of course, it is volunteerism that
drives NASTT and the No-Dig Show.
Without the enormous commitment of our membership, much of
what is presented at our annual
event would not be possible. The
contribution of the Great Lakes,
St. Lawrence and Atlantic Chapter
deserves special recognition and
praise, as it does at every No-Dig
NASTT/GLSLA - 2009 Trenchless Report
Show. Collectively, your Chapter is
an impressive and inspirational
group that have certainly become a
strong voice in our industry. Thank
you for allowing your talents to be
tapped and for your enthusiastic
support of our not-for-profit society.
On behalf of all members of
NASTT, I wish to extend sincere
congratulations to your newly elected Board and to wish them the best
of success.
When NASTT was formed in
1990, it was only a pipe dream to
have Canadian representation from
coast to coast. The Great Lakes,
St. Lawrence and Atlantic Chapter is
a big part of that accomplishment
and I hope to see you at our 20th
Anniversary celebration at the 2010
No-Dig in Chicago, Illinois.
Best regards,
Mike Willmets
Executive Director, NASTT
From the nAsTT Chairman
Chris Brahler, Chairman, NASTT
I also want to highlight a few
upcoming events:
The first part of my term as
NASTT Chair has been exciting and
energizing! It has been an honor to
represent an association and an
industry that in so many ways epitomizes the true spirit of innovation, ingenuity, and good old-fashioned hard work. That hard work
begins with NASTT Regional
Chapters like the GLSLA.
Your commitment and dedication
is so important to the success of the
trenchless industry as a whole that
it cannot be overstated. You make
it happen. Through educational
programs, training events and, of
course, the projects in the field, you
advance the cause and elevate the
industry.
• INFRA Conference, November 1618, 2009 Fairmont Tremblant,
Tremblant, PQ
• ACWWA (Atlantic Canada Water
Works Association), Oct 1819,2009, Halifax, NS
• 2010 CATT Trenchless Road
Show, June 8-10, 2010,
Mississauga, Ontario
In addition, of course, the
upcoming 2010 No-Dig in Chicago,
May 2-7, 2010
Congratulations to the GLSLA for
all of the great work being done,
and a special thank you for all of
the hard work and contributions
made by the GLSLA chapter during
the 2009 No-Dig Show in Toronto
this past April. Great job everyone!
Chris Brahler
Chairman, NASTT
TT Technologies, Inc.
BoArD oF
DIreCTors
Isabel Tardif
CERIU, Quebec
Chair,
Student Chapters Committee
Kevin Bainbridge
City of Hamilton, Ontario
Vice Chair
Derek Potvin
Robinson Consultants
Inc., Ontario
Treasurer
Gerald Bauer
R.V. Anderson
Associates Limited, Ontario
Secretary
Frank Badinski
York Region, Ontario
Past Vice Chair,
Training Committee
Mot du président de nAsTT
La première partie de mon mandat comme président de NASTT a
été mouvementée et motivante.
C’est un honneur de représenter
une association et une industrie
qui, de maintes façons, incarne l’esprit d’innovation, d’ingéniosité et
le bon vieux sens du travail. Ce travail commence avec les chapîtres
régionaux de NASTT comme celui
du GLSLA.
Votre engagement et votre
dévouement est si important au
succès de l’ensemble de l’industrie
sans tranchée qu’on ne peut trop
l’affirmer. Vous en êtes responsables. Grâce aux programmes d’éducation, aux activités de formation et
aux projets sur le terrain vous
avancez la cause et faîtes connaître
l’industrie.
Je voudrais également signaler
quelques événements à venir :
• La conférence INFRA, du 16-18
novembre 2009, Fairmont
Tremblant, Tremblant, P.Q.
• ACWWA (Atlantic Canada Water
Works Association), du 18-19
octobre 2009, à Halifax, N.-É.
• 2010 CATT Trenchless Road
Show, du 8-10 juin 2010, à
Mississauga, Ontario.
Félicitations au chapître GLSLA
pour l’excellent travail en cours et
plus particulièrement pour sa contribution importante lors de la foire
No-Dig 2009 à Toronto en avril.
Mark Bajor
Region of Halton, Ontario
GLSLA Magazine
Sandra Gelly
Genivar, Quebec
Website Committee
Jamie Hannam
Halifax RWC, Nova Scotia
Atlantic Committee
Erika Waite
City of Hamilton, Ontario
Director
Ryan Creamer
Chris Brahler
Chairman, NASTT
TT Technologies, Inc.
Region of Niagara, Ontario
Director
NASTT/GLSLA - 2009 Trenchless Report
9
nAsTT/GlslA Board of Directors
nAsTT/GlslA
Board of Directors
Isabel Tardif,
Chair, student Chapters Committee, CerIU, Quebec
Isabel Tardif holds a Bachelors
Degree in Civil Engineering from
McGill University and a Law
Degree from the Université du
Québec à Montréal. She also
earned a Masters in Project
Management from the Université
du Québec en Outaouais.
Mrs. Tardif is Director of Underground
Infrastructures for the Centre for Expertise and
Research on Infrastructure in Urban Areas (CERIU).
Prior to CERIU, she has held the position of
Operations Manager – Potable Water and Sewer
Kevin Bainbridge,
Kevin is a Civil Engineering
Technologist having graduated in
1995 from Mohawk College in
Hamilton and has worked in the
municipal sewer and water industry for the past 12 years. He is a
professional member of the
Ontario Association of Certified Engineering
Technologists and Technicians (OACETT).
Kevin is currently the Senior Project Manager of
Subsurface Infrastructure for the City of Hamilton’s
Infrastructure Asset Management group. He is directly responsible for the management of the City’s
annual Water Distribution and Wastewater
Collection Capital Improvement Program, development and research in trenchless rehabilitation and
Networks for the City of Aylmer and as well as
Coordinator – Potable Water and Sewer Rehabilitation for
the Engineering Department for the City of Gatineau.
She has been involved in several INFRAGuide
Committees, the North American Society for Trenchless
Technologies (NASTT) and with the CERIU for many
years in regards potable water and sewer underground
infrastructures. Mrs. Tardif had moderated and has given
conferences in Africa and in North America on different
topics pertaining to potable water, sewer, and trenchless
technologies. She currently gives courses and lectures on
trenchless technologies to engineers, technicians, as well
as university and college students.
Vice Chair, City of hamilton, ontario
the life cycle management of the systems. In 2002 he
implemented the City’s first comprehensive programs in
sewer and watermain rehabilitation, which now makes
up more than 50% of the total capital improvement program and more than 35,000 meters (115,000 ft) of pipe
annually.
He has authored and co-authored a number of papers
on various aspects of Infrastructure Management and
Trenchless Technologies and has spoken at various conferences and seminars on the subject, including NASTT
No-Dig, AWWA, CATT, WEAO, ASCE, and Trenchless
Road Show.
With the growing infrastructure deficit across North
America, Kevin is a strong believer that trenchless rehabilitation is a significant key to the sustainable management of underground infrastructure.
www.glsla.ca
10
NASTT/GLSLA - 2009 Trenchless Report
nAsTT/GlslA Board of Directors
Derek potvin,
Treasurer, robinson Consultants Inc., ontario
Derek is a project director with
the multidisciplinary engineering firm, Robinson Consultants
Inc. He obtained his Bachelors of
Applied Sciences with a minor in
business administration at the
University of Ottawa. Derek has been providing
trenchless technology solutions to his clients for over
Gerald Bauer,
20 years, including a trenchless project that won a
Canadian Consulting Engineering Award. Derek is actively involved with the No Dig Conference, where he coauthored a paper that won an “Outstanding Paper
Award”. He is also a presenter of the “Trenchless 101”
course. Derek has been involved as an organizer and presenter of NASTT Short Courses and regional trenchless
conferences such as the Trenchless Road Show.
secretary, r.V. Anderson Associates limited, ontario
Gerald Bauer, P.Eng.: is an
Associate Director and the
Ottawa Office Manager of R.V.
Anderson Associates Limited
with over 26 years of experience
in the fields of municipal and
environmental engineering. Over the past 19 years,
he has focused on infrastructure rehabilitation, completing numerous infrastructure needs studies in
Ontario. He is recognized as a Canadian expert on
trenchless technologies for rehabilitation and construction of sewers and water mains and has presented papers on trenchless projects across North
America for NASTT/GLSLA Chapter, NASTT National
Conference and CATT. In addition, he was one of a
handful of individuals from around the world invited
to present Canada’s experience on Trenchless
Technology in front of a symposium for the Indian
National Government and Provincial representatives
in New Delhi in 2005 (200 delegates attended). He
has completed numerous projects requiring the
assessment of trenchless rehabilitation for deteriorating sewer and water infrastructure (many for large,
deep and complex infrastructure) involving current
industry trenchless technologies, specifically slip-lining, cured-in-place liners, fold and form liners, spot
repairs, grouting, segmental liners, spiral wound liners, zoom camera, CCTV cameras, chemical grouting,
epoxy linings, pipe bursting, horizontal directional
drilling, tunneling, jack and bore, pipe jacking, rock
boring, confined space entry, sonde and ground-penetrating radar. He is familiar with the majority of
available trenchless technologies used, having
assessed them or oversaw their installation on projects. Many of the projects have required condition
assessments, field investigations, modeling, assessment of rehabilitation options, feasibility studies,
preliminary design, detail design, preparation of contract documents, contract administration and inspection.
Mr. Bauer is an active member of NASTT and has
presented several technical papers and published sev-
eral articles on projects using trenchless technology. He
has provided advisory services for three Value
Engineering reviews of large infrastructure rehabilitation
projects. In addition, he participated in the development
of Guidelines for Condition Assessment and
Rehabilitation of Large Sewers (published by the NRC),
also was a member of Working Group for the Best
Practice report on the Assessment and Evaluation of
Municipal Sewer Systems (published by the National
Guide to Sustainable Municipal Infrastructure).
NASTT/GLSLA - 2009 Trenchless Report
11
nAsTT/GlslA Board of Directors
Frank Badinski,
past Vice Chair, Training Committee, York region, ontario
Frank has worked with the
Region of York Environmental
Services Department for the past
20 years and now holds the position of Asset Management
Coordinator. This position contends with all aspects
of the Region’s water and wastewater infrastructure.
Joined the North American Association of Pipeline
Inspectors (NAAPI) in 1995 and presently sits as the
Association’s Vice President and instructs the
Introduction to Data and Asset Management course.
This association has closed its doors as of September,
2008 but is still working to finalize all of its activities.
Joined the NASTT Great Lakes St. Lawrence and
Atlantic Chapter board of directors in 2000 and still sits
on the board as the chair of the Education Committee.
Joined the Centre for Advancement of Trenchless
Technology (CATT) board of directors in 2003 as the
NAAPI chair. Stepped down in 2007 but is still involved
in various activities with the association. He has been
on the epCIP Committee developing underground
infrastructure courses. Also sits as vice-chair on a newly
formed sub-committee called Sewer Pipe Industry
Management Association (SPIMA).
Jamie hannam,
Atlantic Committee, halifax rWC, nova scotia
Jamie is the Manager of
Engineering & Information
Services for Halifax Water, a position he obtained in 2007. Prior to
this he was the Chief Engineer with the Halifax
Regional Water Commission from 1994 to 2007. A
graduate of Acadia (B.Sc. 1983), TUNS (B.Eng. 1985)
and Dalhousie (MBA 1990), he spent the earlier years
of his career in Municipal Government in both
Halifax and Dartmouth working on a variety of engi-
Mark Bajor,
GlslA Magazine, region of halton, ontario
Mark is a Design Supervisor with
the Regional Municipality of
Halton with over 10 years experience in the water and wastewater
industry. He has been responsible
for the research and implementation of several
Trenchless Technology projects utilizing CIPP, Pipe
Bursting and Horizontal Directional Drilling.
Mark has positoned Halton as a leader and innovator in the Trenchless Technology market. From
cement mortar lining to micro-tunneling, Halton has
had positive results with many trenchless technology
applications. As a result, it allows further investigation
and investment in the trenchless technology industry.
He is a member of Ontario Association of Certified
Engineering Technicians and Technologists
12
neering tasks. In his role as Manager of Engineering &
IS he is responsible for water and wastewater infrastructure master planning, asset management, and capital
project delivery with an annual capital budget of
$30M.
Halifax Water, a water and wastewater utility, serving
350,000, with pipes as old as 1856, has utilized trenchless technologies and NASTT resources as key components of our system rehabilitation program for the past
15 years.
NASTT/GLSLA - 2009 Trenchless Report
(OACETT), and North American Society for Trenchless
Technology (NASTT) and sits on the Executive
Committee for West Central Branch of the OPWA.
TRENCHLESS DESIGN
ENGINEERING
www.trenchlessdesign.com
ENGINEERING FOR TRENCHLESS TECHNOLOGY
Tel 905-468-8129
Fax 905-468-9462
Trenchless Design Engineering Ltd.
12 - 111 Fourth Avenue, B-345
St. Catharines, ON Canada L2S 3P5
nAsTT/GlslA Board of Directors
sandra Gelly,
Website Committee, Genivar, Quebec
Sandra received her B.Eng in
Civil Engineering from McGill
University in 2003.
In May 2005, she joined WSA
Trenchless Consultants as a project engineer to promote WSA's
trenchless technology projects in
the Montreal area.
She is regularly involved in the site supervision and
management of trenchless technology and sewer
inspection projects in Quebec and Ontario.
Since April 2006 she has been working on the City
of Montreal’s intervention plan. Within this team
she has helped develop sewer inspection databases,
analyzed sewer management tools and identified
sewer defects obtained from TV inspections, prepared and managed sewer inspection and water
erika Waite,
rehabilitation contracts as well as participated in the different engineering committees involved in the project’s
development.
Sandra has participated in a number of projects and
activities for the GLSLA including NASTT Student
Chapters in the City of Montreal and the preparation of
GLSLA activities in Quebec and Ontario. She is an active
member of the Centre for Expertise and Research on
Infrastructures in Urban Areas (CERIU) in Montreal. Her
training includes sewer defect coding using both NAAPI
and NASSCO for which she is a certified user and trainer,
respectively.
Her past professional experience include nearly two
years as Assistant Technological Councillor in
Underground Infrastructures and Public Utilities at
CERIU.
Director, City of hamilton, ontario
Erika Waite is a Civil
Engineering Technologist having
graduated from Mohawk College
in Hamilton, Ontario in 2003.
She is a Project Manager of
Subsurface Infrastructure for the
City of Hamilton’s Infrastructure
Asset Management team.
Erika has authored, co-authored and presented
papers for NASTT No-Dig and CATT. She is responsible
for the management of various sewer and water capital
improvement projects as well as capital infrastructure coordination projects.
ryan Creamer,
Director, region of
niagara, ontario
Photo
Not Available
Ryan Creamer is a Water and
Wastewater Capital Works
Project Manager for the Niagara Region, he has been
in the Water & Wastewater industry since 2004.
Ryan obtained his Bachelor of Civil Engineering
degree from Lakehead University in 1999. His first
involvement in the water and wastewater industry
was for Peel Region in 2000, as a Jr. Construction
Inspector. In 2007, Ryan was the Project Manager of
the first CIPP Lining project for Niagara Region. He
is looking forward to completing additional trenchless projects within the Region.
This is Ryan’s first year on the Board. He is ready to
expand his knowledge of trenchless rehabilitation.
He is also hoping to develop new trenchless (relationships) within and for the Niagara Region.
NASTT/GLSLA - 2009 Trenchless Report
13
nAsTT/GlslA Calendar of events
nAsTT Training Courses,
Conferences & Chapter events
hdd good Practices gUidelines coUrse
Thursday, November 5, 2009 - Friday, November 6, 2009
York Region Waste Management Centre - York Region, Ontario Canada
nastt laterals good Practices coUrse
Wednesday, January 20, 2010
Tampa Convention Center - Tampa, FL
Sponsored by the Great Lakes, St. Lawrence & Atlantic Chapter of
NASTT. Course Instructors are Dr. Samuel T. Ariaratnam and Dr. David
Bennett. Earn CEUs/PDHs for your participation!
contact info:
Web site: http://www.nastt.org
Frank Badinski
Phone: 905-955-0959 • Email: [email protected]
Sponsored by NASTT in conjunction with UCT. Provides techniques for
maintaining, rehabilitating and replacing sewer laterals and connections,
using case studies, field data and surveys results. Course instructors are
Jason Lueke, Ph.D., P.Eng. and Ray Sterling, Ph.D., P.E.
contact info:
Web site: http://www.uctonline.com
Angela Ghosh
Phone: 703-217-1382 • Email: [email protected]
nastt neW installation methods
good Practices coUrse
Tuesday, November 24, 2009, Calgary, Alberta
hdd good Practices gUidelines coUrse
Wednesday, March 3, 2010
San Diego Convention Center - San Diego, CA
Sponsored in conjunction with the 2009 NASTT. Northwest Trenchless
Conference. Course instructors are Glenn Boyce and Craig Camp.
Topics covered: auger boring, pipe ramming, pipe jacking,
and the pilot tube methods.
contact info:
Web site: http://www.nastt-nw.com
Angela Ghosh
Phone: 703-217-1382 • Email: [email protected]
Sponsored by NASTT in conjunction with the CGA Excavation & Safety
Conference & Expo. Course Instructors are Dr. Samuel T. Ariaratnam and
Dr. David Bennett. Earn CEUs/PDHs for your participation!
contact info:
Web site: http://www.excavationsafetyonline.com/cga/index.php
Angela Ghosh
Phone: 703-217-1382 • Email: [email protected]
2009 nastt northWest trenchless conference
Wednesday, November 25, 2009, Calgary, Alberta
2010 nastt no-dig shoW
Sunday, May 2, 2010 - Friday, May 7, 2010
The Northwest Chapter of the North American Society for Trenchless
Technology is hosting the 2009 NASTT Northwest Trenchless Conference
in Calgary on November 24 and 25, 2009. This conference includes a one
day short course and one day of technical presentations focused on all
aspects of trenchless construction. The Northwest Chapter Project of the
Year will be also awarded at the conference. Please visit the web site at
www.nastt-nw.com for abstract and Project of the Year
submission requirements.
contact info:
Web site: http://www.nastt-nw.com
Duane Strayer
Email: [email protected]
Renaissance Schaumburg Hotel - Chicago (Renaissance), Illinois
Sponsored by the North American Society for Trenchless
Technology (NASTT).
contact info:
Web site: http://www.nodigshow.com
Benjamin Media, Inc. (Conference Management)
Phone: 330-467-7588 • Email: [email protected]
nastt cUred-in-Place-PiPe good Practices coUrse
Wednesday, January 20, 2010
Tampa Convention Center - Tampa, FL
Sponsored by NASTT in conjunction with UCT. In-depth overview of
wastewater mainline and lateral pipe rehab using CIPP. CEUs awarded.
Complimentary UCT full conference pass included. Course instructors are
Mark Knight, Ph.D., P.E. and Kaleel Rahaim.
contact info:
Web site: http://www.uctonline.com
Angela Ghosh
Phone: 703-217-1382 • Email: [email protected]
14
NASTT/GLSLA - 2009 Trenchless Report
toronto trenchless road shoW
June 9-10, 2010
Mississauga Grand Banquet & Convention Centre Ontario, Canada
Sponsored by the Centre for Advancement of Trenchless Technologies
(CATT). Educational Classroom Sessions. Interactive Exhibit Hall.
Networking Opportunities. Live Technical Sessions.
contact info:
Visit www.catt.ca or www.trenchlessonline.com/trs
QUESTIONS
ABOUT TRENCHLESS?
We Have Answers.
NORTH AMERICAN SOCIETY FOR
TRENCHLESS TECHNOLOGY
TM
Get Connected to the Trenchless Industry
Join Today
NASTT is your link to thousands of local, national
and international trenchless professionals
and industry leaders. Whether your business
is engineering, public works and utilities,
underground construction, or equipment
manufacturing, NASTT is the definitive resource
for the trenchless industry and the application of
trenchless methods for the public benefit.
From educational resources to training tools
and more, NASTT members have access to a
wealth of valuable information and networking
opportunities.
Education & Training
NASTT provides top-notch, quality education and
training programs for trenchless professionals.
Currently, NASTT offers six training courses
covering Cured-in-Place-Pipe (CIPP), Horizontal
Directional Drilling (HDD), pipe bursting, sewer
lateral rehabilitation, an overview of trenchless
technologies, and new installation methods
such as auger boring, pipe jacking, pipe
ramming, and the pilot tube method.
Earn Continuing Education
Units (CEUs) for your
participation.
Membership benefits include:
• Members-only discounts
• Complimentary access to online
reference tools and publications
• Subscriptions to industry trade
magazines
• Leadership opportunities
• Involvement in your regional chapter
• And much more! Our members often join
for one reason, only to discover the value
of many others.
Joining is easy. Visit our Web site at
www.nastt.org or call 613-424-3036
(in Canada) or 703-217-1382 (in U.S.)
for membership details.
The Show!
The annual No-Dig Show is the largest
trenchless technology event in North
TM
America, offering an impressive collection
of quality papers, an exhibition hall with more
than 125 trenchless companies displaying their
products and services, a series of specialized
training courses, and many entertaining
networking events and special awards.
Mark your calendars for NASTT’s
No-Dig Show, May 2-7,
2010, in Chicago
(Schaumburg),
Illinois!
1655 N. Ft. Meyer Drive, Suite 700
Arlington, VA 22209
Phone: 613-424-3036 (in Canada) or 703-217-1382 (in U.S.)
Pure Technologies Takes
a Closer Look
Michael Stimpson
Contributing Writer
Pure Technologies Ltd. is an international technology and services company, with its corporate headquarters based in Calgary, Alberta. The company’s
proprietary product portfolio includes SoundPrint, a
continuous acoustic structural monitoring system
for buildings, bridges and other structures;
SoundPrint AFO, a fiber-optic distributed acoustic
sensing system for monitoring and surveillance of
pipelines; P-Wave, an electromagnetic condition
assessment technology for Prestressed Concrete
Cylinder Pipe; and SmartBall, a revolutionary tool to
detect leaks and pockets of trapped gas in pressurized
pipelines.
The company has put its SoundPrint and P-Wave
technology to work in Montreal since the city awarded it a pipeline inspection contract in 2006. Pure was
contracted to inspect and
monitor the city’s largediameter prestressed concrete water transmission
mains. The contract itself
marked a bit of a breakthrough for Pure, which
until that point had seen the
vast majority of its waterrelated revenues emanating
from points outside Canada.
Performed via a subcontract to Montreal’s Advitam
Solutions (Canada), the work
generated significant benefits to the city in its first year.
SoundPrint acoustic monitoring and P-Wave electromagnetic technologies were
employed to find areas of distress in the water transmission mains that needed
either immediate attention
or longer term monitoring.
Subsequent repairs prevented major problems, perhaps
even a catastrophe, from
occurring.
“Damage was found on the Pie Neuf Transmission
main, a 72” diameter PCCP pipeline. This was a critical pipeline for the City of Montreal and could not
be taken out of service since there wasn’t any other
redundancy at the time,” Pure Technologies U.S. Inc.
President Mark Holley explains.
“The fiber optic cable was installed in the pipe
using a parachute deployment system,” continues
Holley. “It was then connected to a data acquisition
unit where Pure monitored and recorded ongoing
wire break activity. What was heard was a series of
wire breaks over a period of three to six months.
There were so many wire breaks that the city took a
closer look at several individual pipes that showed
advanced deterioration and implemented emergency repairs.”
Cable carrying data to acquisition device
16
NASTT/GLSLA - 2009 Trenchless Report
GLSA
Today, another section of pipeline is being monitored with a SoundPrint AFO wet-deployed cable
while the line remains in service. Pure continues
to inspect Montreal’s PCCP pipelines. Another
deployment of its robotic P-wave technology is
Magazine_INFRA2009.pdf
1
14/09/09
2:26 PM
scheduled for the second week of October 2009.
Robotic inspection device
C’est Pure
Montreal needed an electromagnetic condition assessment
inspection of their PCCP water
transmission mains to determine
a baseline of condition and a program for managing those vital
assets. SoundPrint AFO was
deployed to help the City of
Montreal obtain the real-time
deterioration (wire breaks) that
could be happening in its PCCP
water transmission system. As
well, manned-entry P-wave
inspections and robotic P-wave
inspections of several kilometres
of pipelines have also been carried
out.
SoundPrint AFO detected a
number of wire breaks over a
short period in 2007 sections of a
72-inch pre-stressed concrete
water main. The city was advised,
took the line out of service to take
a closer look, found significant
wire breaks, and undertook a
repair program. It was able to put
the main back into service in a
few months without facing a catastrophic failure.
The Montreal experience
demonstrates that Pure
Technologies services are wellproven and well-positioned to
help clients manage their
pipelines on a real-time basis.
C
Municipal Infrastructures:
A vision for the future built on 15 years of experience
Congress INFRA 2009
November 16 to 18
Fairmont Tremblant,
Mont-Tremblant - Québec
M
Y
CM
MY
CY
CMY
K
Undergrounds Infrastructures
Investigation Technique
Development
Underground Infrastructures
Rehabilitation
NASTT/GLSLA - 2009 Trenchless Report
17
Inspection reveals damage to pipe
Acquisitions a Good Fit
Pure Technologies Ltd. recently announced the
acquisition of Jason Consultants Group.
Commenting on this development, Jack Elliott,
Pure’s President, said: “The acquisition of Jason
Consultants Group is consistent with our previouslyannounced strategy of growing our specialist engineering services business to complement our technology and technical services activities. The acquisition of Openaka in
2006 helped us to grow our business
significantly in the prestressed pipe
sector. However, prestressed pipe
accounts for only a small percentage
of the total water and wastewater
pipeline infrastructure in North
America, and we expect that Jason
will help us to access the broader
market for inspection and assessment of pipelines constructed from
ferrous and other materials.
”Jason is particularly strong in the
wastewater sector, an area where
Pure has had limited exposure but
where we see tremendous opportunities,” continues Elliott.
“Furthermore, we believe that
18
NASTT/GLSLA - 2009 Trenchless Report
Jason’s international reputation and activities will
help to generate opportunities for our inspection
and monitoring technologies in overseas markets.”
Specializing in underground infrastructure engineering and technology, Jason Consultants has offices in
Europe and the United States, and is recognized as
one of the top design firms in its sector.
In addition, Pure also acquired the assets of Pipe
Eye International, a robotic inspection services
provider, in 2009. S
The 2009 International
No-Dig Show A RecordBreaking Success
Angela Ghosh
NASTT Assistant Executive Director.
By any measure, the
International No-Dig Show,
March 27 – April 2, 2009, in
Toronto was a success. The
record-setting event brought
together 1,900 attendees and 124
exhibiting companies from 43
countries around the world. The
exhibition hall with more than
243 – 10x10 booths sold was the
largest in No-Dig’s history and
showcased products from around
the world. There were 140 technical papers presented over five
concurrent tracks. International
speakers came from as far afield
as Denmark, France, Germany,
Italy, Japan, China, Poland,
Netherlands and the United
Kingdom.
side of the
Atlantic. NASTT
and ISTT
worked together
again in
Washington in
1992, in New
Orleans in 1996
and in Las Vegas
in 2003. The
event in Las
Vegas built on Ray Sterling (center) accepts the ISTT Gold Medal and NASTT's
past achieveChairman's Award for Outstanding Lifetime Service.
ments and
plus members of the Program
was a great success despite conCommittee
and other countless
cerns about the SARS outbreak in
volunteers who have put together
Hong Kong.
a truly outstanding technical pro“Today we meet in Toronto at a
gram and exhibition,” said
time when world leaders are
Downey.
meeting for the G20 summit in
The gathered international
community enjoyed an exceptional six days of education, solution sharing and peer networking. The purpose of the conference was to showcase the latest in
trenchless innovations and provide educational and networking
opportunities with leading
experts on a global scale.
London. Challenging times lie
ahead for our economies but in
many parts of the world our
industry is going take a lead in
rebuilding our infrastructure
from the bottom up. I’ll bet we
have more fun than the guys in
London,” said Dec Downey, ISTT
Chairman in his opening address.
Joe Loiacono was presented
with an appreciation award for
his hard work and dedication for
serving as Program Chair of the
event. He also credited the
Program Committee members, session leaders, NASTT and BMI staff,
and the attendees “who come and
make everything happen.”
“It’s been a real pleasure to
work with NASTT in the preparation of this event. A lot of hard
work has gone into putting
together a truly international
technical conference for which
we can all be proud. I would personally like to thank Joe
Loiacono, the Program Chair of
this year’s No-Dig, and the forty
“You are the ones, year after
year, who provide our industry
exhibitors and researchers with
the problems and issues which
they use to invent new products
and technologies or improve the
existing ones. You are the ones
who make this industry grow by
your networking and sharing of
experiences at No-Dig. Thank
The International No-Dig Show
was co-sponsored by the
International Society for
Trenchless Technology (ISTT).
This is the fifth international No
Dig event to be held in North
America. The first in Washington
in 1988 positioned trenchless
technology on the map on this
NASTT/GLSLA - 2009 Trenchless Report
19
organizers have many special
events planned including a historical timeline and exhibit to
showcase the founding members.
The conference theme of
“Rebuilding North America’s
Underground Infrastructure
using Trenchless Technology”
will prove to be timely and relevant given that throughout North
America there is a renewed focus
of infrastructure investment. S
2010 No-Dig Show Program Chair
Mark Hallett poses with 2009 Program
Chair Joe Loiacono.
All 13 past and present NASTT chairs
attended the show this year.
The ISTT will host its International
No-Dig in Singapore,
Nov. 10-13, 2010.
Visit - www.istt.com
for more information.
you again!” said Loiacono.
Chris Brahler, NASTT Chair, highlighted
the conference’s successes in his closing
address. “We embarked on a technical
conference and expo that broke all NASTT
records for number of papers presented,
for number of exhibitors, and the number
of attendees. As if that wasn’t enough, we
had a terrific turnout at the Educational
Fund Auction raising over $40,000,” said
Brahler.
As a manufacturer,
distributor, inspection and
repair facility of drillstem
tools for Mini, Midi and Maxi
rigs, HDD Rotary Sales
can provide not only insight
and technical advice on the
maintenance and handling of
pipe, but also unprecedented
quality control.
“Our Gala Dinner and reception was really
first class in every respect, and there we recognized outstanding projects and innovative products. We honored the life achievements and contributions of many people
including countless volunteers who are
responsible for putting on this conference.”
“Yes, this has been an extraordinary
week filled with many memories shared
with good friends, and new approaches
and practices learned. My hope is that
everyone comes away from the 2009 NoDig conference feeling inspired and energized!” said Brahler.
In 2010, NASTT will return to the birthplace where it all began – in Chicago – to
hold the next No-Dig Show and to celebrate its 20th anniversary. Conference
20
www.hddrotary.com or call (936) 446-1200
NASTT/GLSLA - 2009 Trenchless Report
City of Hamilton & GLSLA Host
Japan Society of Trenchless
Technology (JSTT)
Kevin Bainbridge, C.E.T., Senior Project Manager of Subsurface Infastructure, City of Hamilton
n April 2, 2008, the City
of Hamilton’s Public
Works Department, in
partnership with the Great Lakes,
St. Lawrence and Atlantic chapter
of NASTT (NASTT/GLSLA), hosted
a one-day workshop for 15 delegates from the JSTT (Japan Society
for Trenchless Technology). The
delegates were already in Toronto,
attending the 2009 international
No-Dig conference.
The workshop was held at the
Hamilton Convention Centre,
and focused on the planning and
use of Trenchless Technologies in
the City of Hamilton. Several presentations were made by staff
from the City of Hamilton’s
O
Public Works department on various trenchless technology programs the City has developed. In
addition to the presentations,
some time was spent networking
and discussing mutual opportunities and challenges with respect to
the life cycle management of
buried infrastructure. The networking session resulted in some
very useful and innovative
exchanges of information, ideas,
approaches, and technologies. It
is always fascinating to discover
the similarities, and the differences, in the problems faced in
keeping buried infrastructure in
good working condition, regardless of which continent the popu-
lation centres lie.
As an additional part of this
workshop, a field demonstration
was arranged with the City of
Hamilton’s sewer lining contractor. Insituform Technologies was
kind enough to arrange and
supervise a guided tour for the
group on a project whose main
feature of interest was the installation of a 1.2m diameter Cured in
Place Pipe (CIPP) liner on an 80year-old brick sewer.
Many new business and professional contacts were forged, and
an entertaining and informative
session was enjoyed by all those
present. S
NASTT/GLSLA - 2009 Trenchless Report
21
NASTT’s No-Dig Show Heads to Chicago in 2010
Mark Hallett, No-Dig 2010 Program Chair
Dear Trenchless Colleagues,
On behalf of NASTT and the
No-Dig Program Committee, I
am pleased to announce that
Chicago has been chosen as the
destination location for the 2010
No-Dig Show, May 2-7.
2010 is a very special year for
NASTT as we will be celebrating
our 20th anniversary. In 1990,
five key people began to brainstorm on the possibility of establishing a new association just for
trenchless technology. That
organization became known as
NASTT and those five people
became its founding members.
Twenty years later, our society is a
vibrant, growing organization of
more than 1,200 members in the
U.S., Canada and Mexico.
22
It is very appropriate that we
return to the birthplace where
NASTT began – in Chicago – to
celebrate this significant milestone. To showcase the 20-year
history of NASTT, we have
planned a multi-media exhibit
including interviews of past
chairs, photographs and video,
among other special events and
awards. (I’ll have more information to report in my next letter.)
The conference theme of
Rebuilding North America’s
Underground Infrastructure
using Trenchless Technology will
prove to be timely and relevant
given that throughout North
America there is a renewed focus
of investing in our infrastructure.
New topics for 2010:
Infrastructure
Investment;
Environmental
Issues; Social
Costs and
Impacts;
Industry Trends,
Issues and
Concerns;
Cutting-edge
Advancements;
and New
Concepts for
NASTT/GLSLA - 2009 Trenchless Report
Trenchless Equipment, Materials
and Methods
No-Dig 2010 will be held at the
Renaissance Schaumburg Hotel
and Convention Center – a beautiful, luxurious new facility that
combines hotel and meeting
space – all in one location. The
host hotel and event venue is
convenient and accessible – 12
miles from O’Hare Airport and 26
miles from downtown Chicago.
Chicago’s central location and
dense population make it an ideal
place to do business. After hours,
world-class dining, theater and
attractions await you! As you can
see, Chicago has a lot to offer our
No-Dig attendees.
Please consider joining us next
year at No-Dig 2010 as we learn
how to Rebuild North America’s
Underground Infrastructure
Using Trenchless Technology. For
conference updates and information, be sure to visit our web site
at www.nodigshow.com.
Regards,
Mark Hallett
NASTT/GLSLA - 2009 Trenchless Report
23
The Importance of
Numbers
The Chinese believe in lucky
numbers, thus the 8 of the 8th of
2008 (08-08-08) was a lucky date.
This date marked the start of the
Beijing Olympics. It also marked
the Intervention Plan’s best
sheathing day to date.
During the Olympics, each participant strives to achieve results
that surpass his or her expectations aiming for an Olympic or
World record. Project UX-08-002 –
the rehabilitation of clean water
supply conduits by jacketing on
various streets of Montreal claims
to be the largest of its kind ten-
Piero Salvo, Eng. M. Eng.
dered on the island of Montreal
and the largest in the Province of
Quebec.
In keeping with the Olympic
theme, 08-08-08 was a record setting day for the Intervention Plan.
As part of Project UX-08-002,
work on rue du Creusot in the
Saint-Leonard borough set two
records, the first for the longest
continuous installation between
two access shafts at 222 metres,
and the second, for the longest
total installation of 389 metres in
the same day (two sheaths in
total) for a 200 mm conduit.
That date was also a site visit
attended by several individuals
from the Intervention Plan and
the Saint-Leonard borough.
Visitors were able to observe several steps of the project including
conduit cleaning, plugging service access points, installation of
sheaths in the conduit and the
televised inspection of the conduit before and after the installation of sheaths.
Figure 3: Cleaning equipment
Figure 1: Record installation of 222 metres
Figure 2: Record installation of 389 metres
Figure 4: CCTV after sheathing
NASTT/GLSLA - 2009 Trenchless Report
25
Mr. Tony Di Fruscia, Eng., M. Eng. Direction de la
gestion stratégique des réseaux d’eaux (DGSRE) is the
project manager. Piero Salvo, Eng., M. Eng. and Sandra
Gelly, Eng., Intervention Plan are responsible for quality control and project supervision. S
Figure 5: Andrée Séguin, Sandra Gelly, Chantal
Morissette, Nora Bennis
The following are some of the project statistics:
at the beginning of April 2008, there was a call for
tenders for the rehabilitation of water supply conduits with structural sheathing in 8 boroughs,
with a diameter of 150 – 300 mm for a total length
of 9 900 metres.
The contract was valued at $6,195,370.13
including taxes – $1,888,610.38 in the SaintLeonard borough, $754,400.06 in the Anjou borough , $1,839,185.25 in the Montreal North borough, $150,744.56 in the Ville-Marie borough;
$313,566.75 in the South Ouest borough;
$722,431.75 in the CDN/NDG borough;
$367,633.88 in the LaSalle borough and
$164,797.50 in the Lachine borough.
The project was developed based on needs identified in the preparation of the Partial
Intervention Plan (PIP). In preparing the call for
tender, it was agreed to extend the identified areas
considerably as the neighbouring conduits were of
the same type and age as those selected for rehabilitation by the PIP and anticipated costs would
be more competitive.
The project started on July 14, 2008 and the last
1000 meters was completed in the spring 2009.
The contractor, AquaRéhab is currently using
three cleaning and sheathing teams working in
three boroughs simultaneously.
26
NASTT/GLSLA - 2009 Trenchless Report
Figure 6: Sandra Gelly, Tony Di Fruscia, Piero Salvo
84"53&/$)-&44$0/46-5"/54
)"4+0*/&%'03$&48*5)(&/*7"3
"$"/"%*"/-&"%&3*/&/(*/&&3*/(
4FSWJDFTPGGFSFE
Æ 4FMFDUJPOQSPDFTTBOEQMBOOJOHPGXBUFSNBJOBOETFXFS
SFIBCJMJUBUJPOTUSBUFHJFT
Æ 'FBTJCJMJUZTUVEJFTPOUIFVTFPGUSFODIMFTTUFDIOPMPHJFT
Æ 1SFQBSBUJPOPGTQFDJ¾DBUJPOTBOEESBXJOHTGPSUSFODIMFTT
QSPKFDUT
Æ *OEVTUSZSFTFBSDIBOENBSLFUTUVEJFTPOUSFODIMFTT
UFDIOPMPHZ
Æ $MBTTSPPNBOEPOTJUFJOTQFDUPSUSBJOJOH
Æ 2VBMJUZDPOUSPMGPSUSFODIMFTTJOTUBMMBUJPOT
.POUSFBM]XXXHFOJWBSDPN
Calculate the Benefits of
Going Trenchless
Michael Stimpson
Contributing Writer
renchless methods of
installing underground
pipe and cable have certain notinconsiderable advantages over
conventional methods. The
makers of equipment used in
trenchless construction and
rehabilitation have known this
for a long time, as have the construction professionals who use
that equipment and implement
trenchless techniques.
T
The conventional approach of installing underground pipe by digging a trench, placing the pipe
and then burying it means significant amounts of
land must be disturbed and, at least in busy urban
areas, everyday vehicle traffic is inconvenienced. In a
large project, those disturbances and disruptions can
be quite considerable.
The trenchless alternative, on the other hand,
requires less excavation for putting pipe and cable
underground. That means less disturbance of the
ground, reducing environmental impact. Trenchless
construction also generally means less obstruction
and muddling of vehicle traffic and other activities
on or near the work site. And, of course, trenchless
proponents say it’s the way to go in situations where
excavation isn’t practical or the project is in an environmentally sensitive area.
It also makes good sense because of reduced dust,
pollution and noise, among other things.
Clearly, the construction industry’s trenchless contractors have a strong case for their services.
One “new” rhetorical instrument at their disposal
relates to the recent rise in concerns over projects’
“carbon footprint,” pollution that scientists say contributes to global warming. Carbon footprint is the
total amount of greenhouse gases produced by a
project. It’s usually expressed in terms of the equivalent mass of carbon dioxide. In short, the question is
how much is emitted in carbon-containing greenhouse gases during all of the tasks performed in a
project.
Carbon footprint and global warming have
zoomed up the list of public issues in this decade,
with virtually every major jurisdiction creating policies to reduce emissions. Cap-and-trade systems are
on the horizon for U.S. and Canadian businesses, for
example. And British Columbia’s provincial government has mandated all its cities to be “carbon-neutral” by 2012 – i.e., to find ways to offset their carbon
emissions so that the net effect on he atmosphere is
neutral.
The North American Society for Trenchless
Technology’s B.C. chapter (NASTT-BC) contends
that going trenchless means lower carbon emissions
than what is generated by typical open-cut procedures.
David O’Sullivan, past chair and current board
member of NASTT-BC as well as president of Surreybased P.W. Trenchless Construction since 2000, says
the use of trenchless methods for a pipe replacement
project can cut the carbon by an enormous percentage compared to use of the cut-and-cover option.
The difference could be as much as 90 per cent,
according to the construction industry veteran.
NASTT/GLSLA - 2009 Trenchless Report
27
One important factor that makes trenchless more
climate-friendly is in the huge amounts of fuel that
must be burned to remove and replace material in
the course of a conventional cut-and-cover project.
That more conventional approach involves removing earth covering the utility zone, then moving and
disposing of it, then replacing it and restoring it to
solid ground. It’s easy to see how that requires a lot
of energy generated by burning fossil fuels.
As well, a study by University of Waterloo engineers showed how traffic disruptions during utility
construction along roads result in excessive emissions from motor vehicles. The engineers concluded
that trenchless construction eliminates much of that
problem by reducing the disruption of traffic flows.
“Reducing the amount of open
trench also reduces the amount
of soil removal to dump sites and
importing fill material to fill the
trench, minimizing truck emissions,” O’Sullivan recently told a
construction magazine.
NASTT-BC’s website
(www.nastt-bc.org) offers a
handy tool for figuring out how
much less in carbon emissions a
project could have if it were to be
done via trenchless technology
instead of open-cut methods.
The Carbon Calculator, as it’s
called, is the first online tool
of its kind for trenchless-versus-excavation comparisons.
obtaining government funding for low-carbon-emission projects.
To give the calculator a test drive, Underground
Construction magazine entered data for the hypothetical installation of 1,000 feet of 12-inch pipe
underneath asphalt. The Carbon Calculator said
open-cut installation would release more than 700
tonnes of CO2 while the CO2 emissions in installation via slipline/pipebursting techniques would emit
about one-tenth as much.
It should be noted that there are numerous variables involved in calculating carbon emissions from
a future or hypothetical project. The Carbon
Calculator produces estimates based on the data
entered by the user, not spot-on
projections. Having said that, it
does demonstrate how going
trenchless can be much greener
than installation in a large long
hole in the ground.
Regardless of what you think of
global warming science, it is
important that the construction
industry care about its environmental impact, efficiency and
public image.
“So, even if you do not buy into
the reduced carbon concept, and
think it is a government conspiracy, I think we all agree that we
need to reduce our energy use,”
P.W. Trenchless Construction President
O’Sullivan wrote recently in
David O’Sullivan
Trenchless International magazine. “If we can use a number of methods of conIn a nutshell, here’s how the Carbon Calculator
struction that can achieve these kinds of energy
works: You enter basic project information and
reductions and yet maintain our standard of living
answer questions about pertinent project details; it
then we need to change.”
estimates the size of the project’s carbon footprint in
O’Sullivan’s company, P.W. Trenchless
terms of tonnes of carbon dioxide (CO2) emitted. It
Construction, is a leading trenchless contractor in
will estimate carbon emissions that would occur in
B.C. that offers services in sliplining, pipebursting
three types of trenchless construction: horizontal
and directional drilling as alternatives to cut-anddirectional drilling, sliplining/pipebursting and, lastcover construction. Its personnel have been involved
ly, cured-in-place pipe lining, point repair and groutin trenchless construction since many years before
ing. The application’s output also includes an estiP.W. was founded in 2000.
mate of how much trenchless techniques could
O’Sullivan says he hopes to see trenchless construcreduce carbon emissions.
tion become “the default method of underground
The Carbon Calculator was developed for NASTTconstruction – not (just) an option to consider when
BC by an engineering student at the University of
site conditions make excavation difficult.” The
British Columbia and was made available online in
Carbon Calculator can help advance that cause. S
January 2008. Its uses since then have included the
production of supporting data for proposals aimed at
28
NASTT/GLSLA - 2009 Trenchless Report
BALFOUR SANITARY SUBTRUNK SEWER
REHABILITATION – ALTERNATIVE
PROJECT DELIVERY PROCESS
Ashley Rammeloo, P.Eng ., Project Manager, City of London, Wastewater & Drainage Engineering Department
Kim Lewis, Vice President Special Projects, Liquiforce Services (Ontario) Inc.
and Jim Breschuk, P.Eng, Partner and Project Manager, Dillon Consulting Limited
INTRODUCTION
Municipal governments are continually looking
for more cost effective ways to deliver their infrastructure projects. The City of London Wastewater
and Drainage Engineering Department has developed a hybrid project delivery mode, which incorporates the conventional infrastructure Public
Tendering process (low price) with their Request for
Proposal (RFP) process (best value) to deliver a cost
competitive and high value project.
CONVENTIONAL
PROJECT DELIVERY
Most municipalities use the public tender process
to deliver a broad range of infrastructure projects.
This process generally awards the work to the lowest
price submitted. Value considerations, based on the
successful contractors past performance on similar
projects, are included in the award process for tendered work, but not heavily weighted in the award
process. Occasionally, projects carried out by less
experienced contractors, have quality issues and cost
overruns which negatively impact the “value” to the
Owner.
Many municipalities currently use an RFP process
to select qualified engineering consultants to undertake studies and design/construction for their infrastructure projects. This process considers the consultant fees, but also implements a rigorous evaluation process to examine the consultant’s experience,
history and ability to carry out similar projects,
adherence to schedule, budget control, etc. The
focus of this process is to provide more emphasis on
the “quality” and “value” considerations of the project deliverables. The underlying theme is that
increased quality and value inputs by the consultant
will result in more cost effective infrastructure solu-
tions and investment strategies as well as limit the
City’s exposure to risk. The end result is better value
to the taxpayer. However, this process has not been
used extensively for the design and construction of
infrastructure projects.
The City of London was seeking a project delivery
process that could incorporate both philosophies of
the current service delivery modes: low price and
high value.
THE PROJECT
The Balfour Sanitary Sub-trunk Sewer (450mm
diameter concrete pipe) was constructed in 1956.
The sewer travels along a heavily treed ravine into
Kiwanis Park where it outlets to the Pottersburg
Trunk Sanitary Sewer.
A review of the sewer inspection videos indicated
that the sewer exhibited numerous longitudinal
cracks and active infiltration, as well as pipes with
fractures and distortion. Consequently, based on
the condition assessment data and the ratings
assigned to these sewer sections, it was concluded
that these sewers would be ideal candidates for a
NASTT/GLSLA - 2009 Trenchless Report
29
trenchless rehabilitation.
A number of project specific issues were identified
during site visits which were deemed to affect the
selection of the appropriate rehabilitation program.
These issues included:
• Trafalgar Street is a major collector and bus route
complicating traffic control measures.
• The sewer is located in an easement in the rear
yards of existing residences on the east side of
Balfour Place creating access difficulties for repair
or maintenance work.
• The sewer extends across Kiwanis Park lands. Any
construction activity in the park area will result in
costly restoration because of construction vehicles
and disruption to public access.
• Sewage flow rates in the sub-trunk will require
pumping and bypassing to enable the rehabilitation or replacement work to proceed.
• The ravine is heavily treed and includes a tributary
of Pottersburg Creek which will severely restrict
any type of access for construction purposes (tree
assessment required).
• Portions of the sewer are within a flood plain for
Pottersburg Creek and a permit may be required
from the Upper Thames River Conservation
Authority, which may affect construction methods and scheduling.
The project was deemed to have numerous “value”
elements and public impacts, which could be
manipulated during the construction process to
optimize the service life of the rehabilitated sewer
pipes, minimize the cost, and reduce the impact on
the public. Some of these considerations include:
• Impact on residents (i.e. service interruption, traf-
30
NASTT/GLSLA - 2009 Trenchless Report
fic control, etc).
• Environmental impacts (i.e. Pottersburg Creek,
noise, buried contaminants, etc).
• Community impacts (i.e. Kiwanis Park use, local
schools, etc).
• Impact on municipal operations (i.e. transit, winter control, etc).
City staff concluded that this project could be a
good candidate for an alternative project delivery
approach.
ALTERNATIVE PROJECT DELIVERY PROCESS
The City hired Dillon Consulting Limited to help
develop a hybrid process capable of considering
both low price and best value. After researching different value-based delivery modes, it was concluded
that a lowest price/point system (used primarily for
consultant services) could also be applied to a construction project.
An evaluation matrix was developed identifying
important project factors and their respective
weights within a 100-point system.
evaluation factor
1. Experience with
CIPP projects
2. Knowledge of
local standards
and policies
3. Experience dealing
with the Public
4. Innovativeness
relating to pipe
rehabilitation, and
sewer bypassing,
traffic control, etc.
5. Cost of the work
total score
available Points
10
10
10
30
40
100
assigned Points
Each factor could subsequently be broken down further to provide more insight and permit more objective point allocation during the proposal evaluation
phase of the project.
Dillon and City staff developed the project parameters and constraints (i.e. schedule, start date, road closures, bypass pumping requirements, liner design,
acceptable environmental impacts, etc) This information was then incorporated into a hybrid construction document which would outline the process that
the contractors would follow to deliver a project
which would provide the lowest cost/point. The project was designated as a Request for Proposal.
Since the decision had been made to undertake this
project as a “trenchless” application, qualified trenchless contractors would be invited to submit a proposal.
An onsite meeting would be included in the process to
review site conditions, answer questions, and clarify
any other matters.
After a standard “tendering” period with a proposal
closing date, all submissions received would be
reviewed and evaluated against “the process”. A team
of evaluators (minimum of three members) would
then select the submission/contractor which provided
the lowest cost/point and highest value to the City.
The project would then be awarded and Dillon
would provide conventional construction services to
administer the project in accordance with the City’s
standard practices for construction projects.
TESTING THE WATERS
Six specialized trenchless contractors were invited to
submit proposals. After a two week “tendering” period, four contractors submitted proposals. All proposals were evaluated and a recommendation was made
to Council for approval.
The submission by Liquiforce Services (Ontario) Inc.
was deemed to provide the lowest cost/point for the
Balfour project .The Liquiforce submission was also
the lowest cost proposal submitted.
The Balfour project was completed successfully in
three weeks as per the project requirements.
LESSONS LEARNED
At the conclusion of the project, Dillon and City
staff completed an assessment of the process and its
suitability for undertaking infrastructure construction
projects. Areas for improvement to the delivery
process were also considered.
This alternative delivery mode was deemed to be a
success when applied to “trenchless” type projects.
Ashley Rammeloo P.Eng, the City’s Project
Manager, was satisfied with the results of the first
trial of this new process. “The “trenchless” industry
is highly specialized, which lends itself well to projects where the contractors can apply their unique
experience within the project framework set out by
the Owner. We will definitely apply this process to
future “trenchless” projects as well as look for
opportunities to “test drive” the process with other
types of infrastructure work.”
The value-added component was enhanced by
the ability of the process to enable the contractor to
identify creative construction solutions. This
allowed the contractor to minimize local impacts
within a competitive cost structure where “low
price” was only one of many considerations. Kim
Lewis, Vice President Special Projects for Liquiforce,
was especially enthusiastic about the process. “This
process forces us as the contractor to think carefully
about the logistics of our proposal, which helps to
reduce the risk of cost overruns and unexpected
events which can sometimes have undesirable
results. It allows the contractor the flexibility to
draw on their years of experience to put forth a
detailed and solid work plan. Simply put, give us
the parameters and leave it up to us to prove to you
that we are up to meeting the challenges of your
project.“
With the current requirement for municipalities
to deliver Infrastructure Stimulus Funding projects
quickly, the alternative delivery process, when used
for trenchless projects, was instrumental in reducing the project lead time getting projects out to the
contractors in half the time of conventionally delivered projects. Jim Breschuk P.Eng, a Partner and
Project Manager with Dillon Consulting sees this
process as an excellent fit for trenchless projects.
“Project lead times can be significantly reduced by
recognizing and utilizing the considerable experience of the contractor. For this type of work, there
can be a greater value-added component to the
project by letting the contractor get into the finer
details of constructing the works, leaving the stipulation of project limitations and minimum requirements to the Owner and their consultant. Reduced
lead times get the projects “on the street” sooner
and ultimately results in lower costs for the
Owner.”
S
NASTT/GLSLA - 2009 Trenchless Report
31
Triomphe de la technologie sans
tranchée à Toronto
Mike Willmets, Directeur général, NASTT
Si vous êtes engagés à faire de
bonnes décisions en ce qui concerne l’infrastructure sous-terraine,
vous avez sans doute participé à la
foire No-Dig 2009 du 29 mars au 3
avril à Toronto, Canada. Plus de 1
900 personnes de 43 pays ont de
toute évidence pensé que c’était la
chose à faire. Il semblerait aussi que
la foire No-Dig vous aide à prendre
de meilleures décisions.
C’est la première fois que la foire
internationale No-Dig a lieu au
Canada et la 4e foire pour NASTT en
partenariat avec la International
Society for Trenchless Technology.
Cette année, 140 articles techniques
évalués par les paires ont été présentés, du jamais vu pour la foire NoDig, tout à l’honneur du comité
responsable de la programmation
pour 2009. De plus, les halls d’exposition du Sheraton Centre étaient
au complet, ayant accueilli 124
entreprises dont certaines qui en
ont profité pour lancer de nouveaux
produits de la technologie sans
tranchée. Merci à tous les commanditaires ‘Premium’ et aux exposants
de leur appui et leur générosité.
Pour ceux et celles intéressés à la
formation, NASTT a présenté pour
la première fois sous un toit, tous les
six cours sur les règles de bonne pratique de fabrication et l’assistance
était nombreuse. Nous désirons particulièrement remercier les excellents professeurs bénévoles.
La foire de Toronto a sans doute
été un événement jalon pour
NASTT, non seulement parceque
nous avons dépassé les records de
participation et de commanditaires,
mais parce que nous l’avons fait en
dépit de la conjoncture
économique difficile. Nous avons
32
tous adopté une nouvelle attitude
vis-à-vis l’économie, et pour que
l’industrie de la technologie sans
tranchée accorde le sceau d’excellence à la foire No-Dig est preuve
qu’elle est de qualité et qu’elle vaut
le prix du billet. Le 8e encan annuel
au profit du fonds d’éducation a
également bénéficié d’un nombre
record de contributions et nous
vous en remercions. Le meilleur
investissement que nous puissions
faire est celui de venir en aide aux
étudiants. Je suis aussi fier de signaler que les Canadiens ont participé
en grand nombre à la foire 2009, plus
que les autres pays, ce qui a sans
doute contribué à notre succès.
C’est bien sûr le bénévolat qui fait
fonctionner NASTT et la foire NoDig. Sans cet énorme engagement
de la part de nos membres, l’envergure des activités présentées ne
serait pas possible. Le chapître des
Grand Lacs, du Saint-Laurent, et de
l’Atlantique mérite d’être reconnu
et félicité pour sa contribution sans
pareille, tout comme lors de chaque
foire. Dans son ensemble, votre
chapître est un groupe impressionnant et une source d’inspiration qui
est devenu une voix forte au sein de
l’industrie. Nous vous remercions
de partager avec nous vos talents
ainsi que de votre appui enthousiaste envers notre société à but non
lucratif.
Au nom de tous les membres de
NASTT, je désire sincèrement
féliciter les nouveaux élus à votre
conseil d’administration et je leur
souhaite beaucoup de succès.
Lorsque NASTT a été créé en
1990, une représentation canadienne d’une mer à l’autre n’était
qu’une chimère. Le chapître des
Grands Lacs, du Saint-Laurent et de
l’Atlantique est en grande partie
responsable de cette réalisation, et
j’espère que vous serez des nôtres
pour fêter le 20e anniversaire à la
foire No-Dig 2010 à Chicago,
Illinois.
Mike Willmets
Directeur général, NASTT
A New Level of Thinking
A new energy is flowing at DELCAN Water.
We continue to be at the forefront of providing
government and corporate clients in Canada
and around the world with the highest level
of engineering expertise and services.
406mm - HDD under the Rideau Canal, Ottawa
Contact us today and learn more
about how you can benefit from
the new ideas that are flowing
at DELCAN Water.
2100mm - CIPP King Edward Avenue, Ottawa
OTTAWA
•
MARKHAM
•
LONDON
DELCAN Water
625 Cochrane Drive, Suite 500,
Markham, Ontario, Canada L3R 9R9
Tel: 905.943.0500 Fax: 905.943.0400
NASTT/GLSLA - Rapport Sans tranchée - 2009
•
VANCOUVER
•
www.delcan.com
[email protected]
VICTORIA
Pure jette un coup d’oeil attentif
Michael Stimpson
Rédacteur
Pure Technologies Ltd. est une société internationale de technologies et services dont le siège
social est situé à Calgary, en Alberta. Le portefeuille
de marques déposées de la société comprend
SoundPrint, un système à l’écoute des acoustiques
pour la surveillance continue de l’état structurel des
édifices, des ponts et d’autres structures; SoundPrint
AFO, un système sensible aux acoustiques distribué
par fibre-optique pour l’écoute et la surveillance de
pipelines; P-Wave, une technologie d’évaluation
électromagnétique pour les conduites cylindriques
en béton précontraint; et SmartBall, un outil révolutionnaire qui permet de détecter les fuites et les
poches de gas emprisonnées dans les conduites sous
pression.
La société a mis à l’oeuvre ses technologies
SoundPrint et P-Wave à Montréal depuis que la ville
lui a accordé un contrat pour l’inspection de
pipelines en 2006. Pure a été embauché pour
inspecter et surveiller les conduites principales d’eau
à grand diamètre en béton précontraint de la ville.
Ce contrat démarque une percée pour Pure, qui à ce
point réalisait la majorité de ses revenus à l’étranger.
Par l’entremise d’un marché de sous-traitance avec
Advitam Solutions, une société montréalaise, ce travail a généré d’importants bénéfices à la ville dès la
première année. La technologie de surveillance
acoustique SoundPrint et la technologie électromagnétique de P-Wave ont été employées pour détecter
les endroits en détresse dans les conduites principales de transmission d’eau qui nécessitaient une
attention immédiate ou encore une surveillance
continue. Les réparations ultérieures ont empêché la
venue de problèmes importants, possiblement
même la catastrophe.
«On a trouvé des dommages dans la conduite principale Pie Neuf, une pipeline PCCP de 72 pouces de
diamètre. Cette pipeline, essentielle pour la ville de
Montréal, ne pouvait être hors service parce qu’il n’y
avait pas de redondance dans le système » explique
Mark Holley, président de Pure Technologies US Inc.
« Le câble à fibre optique a été installé dans la conduite d’eau en employant un sytème de déploiement
de parachute » précise Holley. « Le câble a ensuite été
connecté à un DAU qui a permis à Pure de surveiller
et d’enregistrer toute activité de rupture de câble de
façon continue. Les enregistrements ont identifié
une série de ruptures étendues sur une durée de trois
à six mois. Il y avait tellement de ruptures que la
ville a regardé de plus près plusieurs pipelines individuelles qui montraient une détérioration avancée
et elle a mis en oeuvre des réparations de secours.
C’EST PURE
Montréal avait besoin d’une évaluation de l’état
électromagnétique de ses conduites principales d’eau
afin d’établir une ligne de base et un programme
pour gérer ces actifs indispensables. SoundPrint AFO
a été déployé pour aider à la ville de Montréal
d’obtenir des informations sur la détérioration en
temps réel des ruptures de câble qui se passaient possiblement dans son sytème de transmission d’eau
PCCP. De plus, des inspections à entrée habitée P-Wave
et des inspections robotiques P-Wave de plusieurs kilomètres de conduites ont aussi été effectuées.
SoundPrint AFO a découvert un nombre de ruptures de câble dans certaines sections d’une conduite
principale d’eau en béton précontraint de 72 pouces,
pendant une courte période en 2007. La ville en a été
avisée et elle a placé la conduite hors service pour y
regarder de plus près. Elle a trouvé plusieurs ruptures
de câble et a entrepris un programme de réparation.
Câble qui transmet les données au dispositif d’acquisition
NASTT/GLSLA - Rapport Sans tranchée - 2009
33
Dispositif robotique pour l’inspection
Elle a pu remettre la conduite principale en service
quelques mois plus tard sans envisager une faillite catastrophique.
L’expérience de la situation à Montréal démontre
que les services Pure Technologies sont prouvés et peuvent aider les clients à gérer leurs pipelines en temps
réel.
Aujourd’hui, une autre section de conduite est surveillée avec SoundPrint AFO un procédé de
déploiement à voie humide bien qu’elle demeure en
service. Pure continue la surveillance des pipelines
PCCP à Montréal. Un autre déploiement de la technologie P-Wave robotique est prévu la deuxième
semaine d’octobre 2009.
Nord et nous anticipons que Jason nous permettra
d’accéder à un plus grand marché pour l’inspection
et l’évaluation des conduites en matériaux ferreux et
autres.
« Jason est particulièrement fort dans le marché
des eaux d’égout, un domaine dans lequel Pure n’a
eu qu’une visibilité limitée mais où nous voyons
d’énormes possibilités » continue Elliot. « De plus,
nous croyons que la réputation internationale de
Jason et ses activités aideront à générer des opportunités pour nos technologies d’inspection et de surveillance dans les marchés outremer. » Jason
Consultants qui compte des bureaux en Europe et
aux États-Unis est reconnu comme une des meilleurs
sociétés en design dans son secteur.
En 2009, Pure a acquis les actifs de Pipe Eye
International, un fournisseur de services en inspection robotique. S
L’ACQUISITION C’EST BON POUR LES AFFAIRES
Pure Technologies Ltd. a récemment annoncé l’acquisition de Jason
Consultants Group. Jack Elliot, le
président de Pure a fait les remarques suivantes à ce sujet: «
L’acquisition de Jason Consultants
Group cadre bien avec notre
stratégie d’augmenter nos services
spécialisés en ingénierie afin d’ajouter à notre technologie et nos
activités de services techniques.
L’acquisition de Openaka en 2006
nous a permis d’augmenter notre
chiffre d’affaires dans le secteur des
conduites en béton précontraint.
Cependant, les conduites en béton
précontraint représentent seulement
un petit pourcentage du total de
l’infrastructure des conduites d’eau
et des eaux d’égout en Amérique du
34
NASTT/GLSLA - Rapport Sans tranchée - 2009
L’inspection révèle les dommages à la pipe
QUESTIONS AU SUJET DE
LA TECHNOLOGIE SANS TRANCHÉE?
Nous Avons Les Réponses.
NORTH AMERICAN SOCIETY FOR
TRENCHLESS TECHNOLOGY
TM
Branchez vous à l’industrie sans tranchée.
Devenez membre dès aujourd’hui
NASTT est votre lien à des milliers de
professionnels de technologie sans tranchée
aux niveaux local, national et international ainsi
qu’aux leaders de l’industrie. Que votre entreprise
soit celle de l’ ingénierie, des travaux et services
publics, de la construction souterraine, ou encore
celle de la fabrication d’équipement, NASTT est la
ressource définitive de l’industrie de la technologie
sans tranchée et la mise en application de ces
méthodes pour le bénéfice du public.
Que ce soit des ressources éducatives, des
outils de formation ou autres, NASST offre à ses
membres l’accès à une mine de renseignements
et l’opportunité de faire du réseautage.
Les bénéfices d’affiliation:
•
Rabais uniquement pour les membres
•
Accès gratuit aux outils de référence et
publications en ligne
•
Abonnement aux magazines de l’industrie
Éducation et formation
•
Opportunités de leadership
NASTT offre des programmes d’éducation et de
formation exceptionnels pour les professionnels
de la technologie sans tranchée. En ce
moment, NASTT offre six cours de formation,
soit le chemissage (CIPP), le forage horizontal
dirigé (HDD), les techniques d’éclatement, la
réhabilitation des conduites secondaires, le survol
des technologies sans tranchée et les nouvelles
méthodes d’installation tels le forage à la
tarière, le levage de tuyau, le fonçage,
et la méthode tube pilote. Participez
et obtenez des crédits
d’éducation permanente
en étudiant.
•
Engagement dans votre chapître régional
•
Et plus encore! Nos membres adhèrent
souvent pour une raison, et découvrent
ensuite la valeur de bien d’autres.
Devenir membre c’est facile. Visitez notre site
web à www.nastt.org ou signalez le
613-424-3036 (au Canada) ou encore le
703-217-1382 (aux ÉU) pour les détails
d’adhésion.
La foire!
La foire annuelle No-Dig est le plus
grand événement de la technologie sans
tranchée en Amérique du Nord, offrant une
TM
collection impressionante de documents de
qualité, un hall d’exposition accueillant plus de
125 entreprises de l’industrie de la technolgoie
sans tranchée présentant leurs produits et services,
une série de cours spécialisés, de nombreuses
opportunités divertissantes de réseautage
et des prix particuliers. Notez la
date de la foire No-Dig de
NASTT du 2 au 7 mai
2010 à Chicago
(Schaumburg)
Illinois!
1655 N. Ft. Meyer Drive, Suite 700
Arlington, VA 22209
Tél.613-424-3036 (Canada) ou 703-217-1382 (ÉU)
www.nastt.org
La foire No-Dig met le cap sur Chicago en 2010
Mark Hallett, Président du Comité organisateur No-Dig 2010
Chers collègues de l’industrie
sans tranchée,
De la part de NASTT et du
comité No-Dig 2010, c’est avec
plaisir que je vous annonce que
Chicago accueillera la foire «2010
No-Dig Show», du 2 au 7 mai.
2010 est une année spéciale
pour NASTT puisque nous célebrerons notre vingtième anniversaire. En 1990, cinq personnes clé
ont commencé à considérer la
possibilité d’établir une nouvelle
association pour la technologie
sans tranchée. Aujourd’hui, cette
organisation s’appelle NASTT et
ces cinq personnes en sont
devenus les membres fondateurs.
Vingt ans ont passé et notre
société est vibrante et en plein
essor avec plus de 1 200 membres
aux États-Unis, au Canada et a
Mexique.
Il est tout à fait approprié que
nous retournions à l’endroit où
36
NASTT a vu le jour – à Chicago –
pour célébrer ce jalon important.
Dans le but de mettre en valeur
les vingt ans d’histoire de NASTT,
nous avons prévu une présentation multi-média qui inclut des
entrevues avec les présidents sortants, des photos et des vidéos,
ainsi que d’autres activités et la
remise de prix. (J’aurai plus de
détails à vous donner dans ma
prochaine lettre.)
Le thème de la conférence
Rebuilding North America’s
Underground Infrastructure using
Trenchless Technology s’avérera à
propos et pertinent étant donné
qu’il existe partout en Amérique
du Nord un regain d’intérêt dans
l’investissement de notre infrastructure.
Nouveaux thèmes pour 2010 :
l’investissement dans l’infrastructure; les enjeux environnementaux; les coûts sociaux et leur
impact; les tendances de l’industrie, les enjeux et les préoccupations; les avances à la fine pointe
de la technologie; les nouveaux concepts
en matériaux,
en méthodes et
en équipement
sans tranchée.
No-Dig 2010
aura lieu à
l‘hôtel
Renaissance
Schaumburg
NASTT/GLSLA - Rapport Sans tranchée - 2009
Hotel and Convention Center –
un bel et luxueux établissement
qui fusionne hôtel et centre des
congrès – à un même endroit.
Notre hôtel d’accueil et lieu de
réunion est accessible et pratique
– à 12 milles de l’aéroport O’Hare
et à 26 milles du centre-ville de
Chicago.
L’emplacement central de la
ville de Chicago et sa population
dense font d’elle un endroit idéal
pour les affaires. En soirée, les
restaurants, les théatres et d’autres
divertissements vous attendent.
Comme vous le voyez, Chicago a
plein de choses à offrir aux participants de la foire No-Dig.
Soyez des nôtres l’an prochain à
No-Dig 2010 alors que nous
apprendrons comment reconstruire les infastructures nord-américaines en utilisant des techniques
sans tranchée (Rebuild North
America’s Underground
Infrastructure Using Trenchless
Technology). Pour de plus amples
renseignements au sujet de la conférence et toute autre information,
nous vous invitons à visiter notre
site web à www.nodigshow.com.
Bien à vous,
Mark Hallett
Le CERIU présent à
l’International No-Dig 2009
de Toronto
GLSA Magazine_INFRA2009.pdf
1
14/09/09
2:26 PM
Isabel Tardif, Directrice, CERIU
u 29 mars au 3 avril s’est déroulé
l’International No-Dig 2009 Show à
Toronto. Organisé par la North American
Society for Trenchless Technology (NASTT) en
A vision for the future built on
partenariat avec l’International Society for
Trenchless Technology (ISTT), il s’agit du plus
Congress
grand événement
sur lesINFRA
méthodes2009
et les techniques sansNovember
tranchée, reconnues
pour optimiser les
16 to 18
investissements et améliorer l’état des infrastrucFairmont Tremblant,
tures souterraines.
D
Municipal Infrastructures:
Mont-Tremblant - Québec
Le CERIU était présent à ce rendez-vous. Sa directrice,
Isabel Tardif, responsable du Conseil permaM
nent Infrastructures souterraines a présenté une
Yconférence intitulée How to Take Advantage of Green
Thinking to Get More Funding for Infrastructure.
CM
S’adressant aux gestionnaires et aux élus qui veuMYlent privilégier des solutions vertes et optimiser les
ressources financières de leur municipalité,
CY
madame Tardif a démontré comment le choix d’un
CMY
bassin adapté ainsi qu’une procédure d’évaluation
des
mesures et des modélisations associées à l’infilK
tration d’eau parvenaient à garantir une réduction
des dépenses énergétiques et des gaz à effet de serre.
En effet, si l’on considère que l’étanchéisation
améliore la durabilité des systèmes d’égouts et permet un report des projets d’implantation de stations de traitement des eaux usées, cette approche
comporte des avantages économiques non négligeables à long terme pour les municipalités.
C
de chantier était aussi au programme pendant laquelle
a eu lieu un chemisage structural d’une conduite d’égout en brique de grand diamètre.
15
years ofa pu
experience
L’événement
compter sur la participation de
nombreux membres du CERIU dont celle de M.
Joseph Loiacono, Sanexen, à titre de président du
Comité organisateur.
Mettre la référence internet : www.nodigshow.com
Avis aux intéressés, l’édition 2010 aura lieu à
Chicago du 2 au 7 mai 2010.
$0/46-5"/5484"4"/453"/$)c&
"+0*/5(&/*7"36/-&"%&3&/
*/(c/*&3*&"6$"/"%"
4FSWJDFTPGGFSUT
Æ cUVEFTEFGBJTBCJMJUnQPVSMµVUJMJTBUJPOEFUFDIOJRVFTTBOT
USBODInF
Æ 1SnQBSBUJPOEFTUSBUnHJFTEµBVTDVMUBUJPO
SnTFBVYEµFBVQPUBCMFFUEµnHPVU
Æ "OBMZTFTEµJOTQFDUJPOTUnMnWJTnFTFUSFDPNNBOEBUJPOT
EµJOUFSWFOUJPO
Æ 1MBOTEFWJTFUTVSWFJMMBODFEFDIBOUJFSQPVSEFTQSPKFUT
TBOTUSBODInF
Æ $POUSyMFEFRVBMJUnQPVSMFTJOTUBMMBUJPOTTBOTUSBODInF
Æ $PVSTEFGPSNBUJPOQPVSEFTTVSWFJMMBOUTEFDIBOUJFST
Lors de cet événement, Mme Tardif, a également
participé à un atelier d’une journée où une délégation de membres de la Japanese Society for
Trenchless Undergrounds
Technology (JSTT) était
invitée par la
Infrastructures
ville de Hamilton à échanger sur diverses techInvestigation
Technique
niques en infrastructures
souterraines.
Une visite
Development
38
NASTT/GLSLA - Rapport Sans tranchée - 2009
Underground Infrastructures
Rehabilitation
.POUSnBM]XXXHFOJWBSDPN
l’importance des
chiffres
Le peuple chinois croit aux
numéros chanceux et pour lui le 8
du 8 de 2008 (08-08-08) était une
date chanceuse. Cette date correspond au début des Jeux
olympiques de Beijing et pour le
Plan d’Intervention, marque la
plus grande journée d’installation
de gaines à date.
Pendant les Jeux olympiques,
chaque participant vise à atteindre des résultats qui dépassent ses
attentes et tente d’établir un nouveau record olympique ou mondial. Le projet UX-08-002 – travaux
de réhabilitation des conduites
Piero Salvo, ing. M. ing
d’eau potable par chemisage sur
diverses rues de la ville de
Montréal prétend être le plus
grand projet soumis à un appel
d’offres sur l’Ile de Montréal et le
plus grand projet de ce genre dans
la province de Québec.
En gardant l’esprit des Jeux
olympiques, cette même journée,
le 08-08-08, a été une journée de
records pour le Plan
d’Intervention. Dans le cadre du
projet UX-08-002 les travaux sur
la rue du Creusot, dans l’arrondissement Saint-Léonard ont
été témoins de deux records, le
premier pour la plus longue
installation continue de 222
mètres entre deux puits d’accès et
le deuxième pour la plus grande
installation totale de 389 mètres
dans la même journée (deux
gaines en totalité) pour une conduite de 200 mm.
Cette même journée, plusieurs
personnes du PI et de l’arrondissement Saint-Léonard ont fait une
Figure 3 – Équipement de nettoyage
Figure 1 – Record d’installation 222 mètres
Figure 2 – Record d’installation 389 mètres
Figure 4 – CCTV après gainage
NASTT/GLSLA - Rapport Sans tranchée - 2009
39
Le projet a été élaboré selon les
besoins identifiés dans la préparation des Plans d’Intervention
Partiel (PIP). Lors de la préparation de l’appel d’offres il a été convenu de prolonger les secteurs
identifiés de façon importante car
les conduites avoisinantes celles
choisies dans les PIPs étaient du
même type et année de construction et que les prix attendus
seraient plus compétitifs.
Le projet a débuter le 14 juillet
2008 et le dernier 1000 mètres a
Figure 5 – Andrée Séguin, Sandra Gelly, Chantal
été complété au printemps 2009.
Morissette, Nora Bennis
L’Entrepreneur, AquaRéhab
visite de chantier. Les visiteurs ont pu observer
emploie présentement trois(3) équipes de nettoyage et
plusieurs étapes du processus dont le nettoyage de
gainage et travaille dans trois arrondissements simulla conduite, le bouchonnage des entrées de servtanément.
ice, l’installation de gaines dans la conduite et l’inM. Tony Di Fruscia, ing., M.ing. de la Direction de
spection télévisée de la conduite avant et après
la gestion stratégiques des réseaux d’eaux (DGSRE)
l’installation des gaines.
assure la gestion du projet. Piero Salvo, ing., M.ing. et
Voici quelques statistiques du projet en question
: L’appel d’offres a été lancé au début avril 2008
pour un projet de réhabilitation des conduites
d’aqueduc avec une gaine structurale dans huit (8)
arrondissements, ayant un
diamètre de 150 à 300 mm et une
longueur totale de 9 900 mètres.
La valeur du contrat se chiffre à
6 195 370, 13$ (toutes taxes
incluses) – 1 888 610,38$ dans
l’arrondissement de SaintLéonard; 754 400, 06 $ dans l’arrondissement Anjou; 1 839 185,
25$ dans l’arrondissement
Montréal-Nord, 150 744, 56$
dans l’arrondissement VilleMarie; 313 566, 75$ dans l’arrondissement Sud-Ouest; 722
431, 75$ dans l’arrondissement
CDN/NDG; 367 633, 88$ dans
l’arrondissement LaSalle; 164
797, 50$ dans l’arrondissement
Lachine.
40
Sandra Gelly, ing. du Plan d’Intervention assurent la
gestion du contrôle de la qualité et la surveillance des
travaux. S
Figure 6 – Sandra Gelly, Tony Di Fruscia, Piero Salvo
NASTT/GLSLA - Rapport Sans tranchée - 2009
erience
Nouvelles fiches techniques en
infrastructures souterraines
Isabel Tardif, Directrice, CERIU
e CERIU a élabore sept nouvelles fiches techniques du
Classeur Infrastructures
souterraines qui ont été réalisées
avec l’aide de plusieurs municipalités du Québec afin d’aider les
intervenants à mieux maîtriser les
techniques d’auscultation et de
réhabilitation.
L
En voici la
liste complète :
Techniques d’auscultation
- Étude de la corrosivité des sols,
en collaboration avec l’agglomération de Longueuil (AGp01.p1)
- Localisation de conduites
souterraines, en collaboration
avec la municipalité de SainteMarie Madeleine (AGp-03.p1)
- Mesure de débit et test de
fumée, en collaboration avec la
ville de Saint-Hyacinthe (AM02.p1)
Techniques de réhabilitation
- Excavation pneumatique, en
collaboration avec la ville de
Québec (IP-03.p1)
- Dérivation temporaire, en collaboration avec la ville de
Gatineau (IP-05.p1)
- Protection cathodique par
anode sacrificielle, suivi et
maintenance en collaboration
avec la ville de Gatineau (SP01.p1)
- Protection cathodique par
anode sacrificielle, en collaboration avec la ville de Boucherville
(SP-01.p2)
NASTT/GLSLA - Rapport Sans tranchée - 2009
41
Le revêtement structurel de conduites
maîtresses dans la ville d’Ottawa
retourne à ses racines
Todd Penfound, TSAI., Ville d’Ottawa
George Blow, P. Ing., Robinson Consultants Inc.
Arrière plan
La ville d’Ottawa emploie le revêtement structurel
depuis 2001 comme partie de leur programme continu de rénovation de conduites maîtresses. En octobre 2001, Ottawa est devenu la première ville en
Ontario à procéder à l’installation d’un nouveau système de revêtement structurel dans leur système de
distribution d’eau. Le projet pilote comprenait le
revêtement structurel de 1,5 km de conduites
maîtresses en fonte de 152mm dans le lotissement de
Crystal Beach à l’ouest de la ville. Dans les huit
dernières années, la ville a procédé à près de 30 km de
conduites maîtresses dans différents quartiers de la
ville. Ceci n’est qu’un petit pourcentage des plus de 1
000 km de conduites maîtresses employées dans le
réseau de distribution d’eau de la ville, qui compte
plus de 2 500 km de conduites maîtresses. En 2009, le
programme annuel de revêtement s’est poursuivi
dans la région de Lakeview, un lotissement immédiatement adjacent à Crystal Beach.
mm à 305 mm de diamètre. Les vieilles conduites
maîtresses non-revêtues peuvent développer une
accumulation ou tuberculisation causée par la corrosion interne qui peut réduire la capacité hydraulique
et causer les problèmes d’eau rouge. À cause de cette
tuberculisation, la région Lakeview est devenue une
source d’un bon nombre de fuites de conduites
maîtresses et de problèmes d’eau rouge. Un nettoyage
par chasse d’eau était requis régulièrement en réponse
aux nombreuses plaintes des résidents. Les routes et
les égouts existants sont en bonne condition et ont
une durée de vie estimée à plus de 20 ans. Ces facteurs, combinés avec l’impact atténué de la construction sans tranchée sur la vie quotidienne des résidents, font en sorte que cet endroit est idéal pour une
réhabilitation sans tranchée.
Le revêtement structurel complet a été choisi
comme solution afin de prolonger la vie du tuyau
cible partiellement détérioré. Les exigences du système de revêtement intérieur comprenaient un plan
Emplacement du projet
Le projet Lakeview
En novembre 2008, la ville a retenu les services de
Robinson Consultants Inc. afin d’évaluer la pertinence d’une solution sans tranchée et de concevoir
un plan pour la réhabilitation des conduites maîtresses dans la région de Lakeview Park. La ville d’Ottawa
observe certains critères dans la sélection des endroits
où le revêtement structurel se déroule. Dans le cas de
la région Lakeview on retrouve 3,7 km de conduites
maîtresses en fonte vieilles de 40 ans allant de 150
Tranchée à ciel ouvert
42
NASTT/GLSLA - Rapport Sans tranchée - 2009
Construction sans tranchée
Revêtement inversé et puits d’accès
permettant de rencontrer les normes F1216 de la
ASTM et une résine epoxyde comportant le certificat
d’agrément 61 de la NSF.
Durant l’étape du désign, un journée porte-ouverte
a eu lieu au centre communautaire local et l’assistance était nombreuse. Une fois le processus de
revêtement intérieur expliqué aux participants, la
communauté a fortement appuyé le projet. Cet appui
s’est fait sentir tout au long de la période de construction. La rétroaction régulière de la part des résidents a
été positive en raison des interruptions très limitées
causées par les démontages, la poussière et le bruit.
L’envergure du projet exigeait une construction en
trois étapes afin de limiter la zone nécéssitant des
services d’eau temporaires. Une fois les services temporaires d’eau en place, la conduite maîtresse a été
isolée et une inspection TVCF a été exécutée afin de
vérifier l’état de la pipe et de localiser les coudes ou les
réducteurs impassables. Pendant l’inspection TVCF,
des tampons ont été insérés dans les connexions de
service afin de permettre un rétablissement ultérieur
en prévenant que la résine se réplace et bloque les
connexions de service.
Le processus de revêtement intérieur comprend son
imprégnation avec une résine époxyde, ou processus
d’impregnation complète, son insertion dans le tuyau
cible et son étuvage. Le processus d’imprégnation
complète s’est fait sur le site et consistait à imprégner
de résine époxyde le revêtement en feutre à deux
épaisseurs renforcé de fibre de verre. L’insertion du
revêtement s’est fait en le poussant en position inversée avec de l’air à travers le tuyau cible. C’était la première fois dans les huit années du programme de
revêtement à Ottawa qu’on utilisait le processus de
revêtement inversé, tous les autres projets de revêtement ayant utilisé la méthode de tirage sur le fond.
Une fois le revêtement en place entre chaque puits
d’accès, on a commencé le procédé de durcissement
en injectant de la vapeur dans le tuyau revêtu. Ce
processus a pris environ trois heures pendant
lesquelles la chaleur augmentait d’environ 90 degrés
Celsius par heure, suivi d’une période de durcissement de deux heures et demie. Les sections individuelles de revêtement ont été complétées en longueurs
de 75 m à 160 m.
Une fois le nouveau revêtement durci, un test de
pression hydrostatique a été effectué pour assurer un
produit final libre de fuite. Une fois le test de pression
complété avec succès, les connexions de service ont
été rétablies de l’intérieur du tuyau par l’entremise
d’un outil tranchant robotique guidé par télécommande. L’outil robotique tranche à travers le revêtement et enlève le tampon inséré durant l’étape d’inspection par TVCF afin que les connexions de services
puissent être rétablies sans démontages additionnels.
En plus du travail de revêtement, toutes les valves et
prises d’eau d’incendie ont été remplacées. Le projet
comprenait l’ajout de valves à certains endroits afin
de répondre aux critères d’espacement de 300 m
exigés par la ville d’Ottawa. Des prises d’eau d’in-
Pouvoir d’imprégnation complète
NASTT/GLSLA - Rapport Sans tranchée - 2009
43
Outil robotique rétablissant les connexions de service
cendie supplémentaires ont également été ajoutées à
plus proche intervalle afin de répondre aux normes
de protection d’incendie qui exigent de 110 à 125 m
d’écart alors que certains endroits comptaient jusqu’à
310 m d’écart. De nouvelles anodes de magnésium
ont été installées dans les démontages afin de protéger les nouvelles valves et prises d’eau d’incendie
contre la corrosion et pour offrir une protection contre la corrosion externe du tuyau cible.
Les bénéfices du revêtement structurel
On estime que la réhabilitation de conduites
maîtresses à Lakeview a permis d’épargner plus de 1, 5
millions de dollars, ce qui représente une épargne d’environ 40% comparé aux tranchées à ciel ouvert traditionnelles. Tenant compte de la longueur des conduites
maîtresses réhabilitées dans la ville d’Ottawa depuis
2001, on estime que le montant total épargné par le
programme annuel de revêtement se chiffre à plus de
10 millions de dollars. En plus des épargnes associées
aux coûts en capital et au cycle de vie, la réduction des
interruptions aux clients dans la communauté démontre la valeur d’utiliser la technologie sans tranchée là
où les circonstances le permettent. Parmi les autres
bénéfices du programme de revêtement structurel on
retrouve une réduction dans les durées de construction, moins d’impact sur les trottoirs, les chaussées et
les autres services, une amélioration dans le débit d’eau
grâce à une friction réduite dans les tuyaux internes, et
finalement des conduites maîtresses au chemissage
complet et résistantes à la corrosion qui devraient
durer plus de 40 années.
Bien que le projet Lakeview se poursuive jusqu’au
printemps 2010, on le considère un succès grâce à la
collaboration de tous les intervenants, y compris
Aqua Rehab, l’entrepreneur choisi pour gérer le projet. Le programme annuel de revêtement et les
épargnes associées sont aussi considérés un succès par
la ville d’Ottawa, l’équipe de design Robinson
Consultants Inc. et Genivar, partenaires du programme depuis ses débuts en 2001. S
Procédé de durcissement du revêtement
44
NASTT/GLSLA - Rapport Sans tranchée - 2009
Calculez les bénéfices de la
technologie sans tranchée
Michael Stimpson
Rédacteur
’installation souterraine de
tuyaux et de câbles par la
méthode sans tranchée présente
des avantages par rapport à la
méthode conventionnelle qu’on
utilise aujourd’hui. Les fabricants
de l’équipement pour la réhabilitation et la construction souterraine le savent depuis longtemps,
tout comme les professionnels de
l’industrie qui utilisent cet
équipement et pratiquent les techniques sans tranchée.
L
L’approche conventionelle selon laquelle le tuyau
est mis sous terre en creusant une tranchée, en le
plaçant à l’intérieur et en le recouvrant de terre veut
dire qu’un montant considérable de terre doit être
manipulé et déplacé, chose qui peut troubler la circulation quotidienne dans les centres urbains achalandés. Si le projet est de grande envergure, les perturbations peuvent être considérables.
L’option sans tranchée nécessite moins d’excavation pour l’installation souterraine de tuyaux et de
câbles. Moins d’excavation veut dire moins de
dégâts, phénomène qui atténue l’impact environnemental. La construction sans tranchée gêne
généralement moins la circulation ou même toute
autre activité près du site de travail. Bien sûr, les promoteurs préconisent la solution sans tranchée dans
les situations où l’excavation n’est pas pratique ou
encore si le projet se trouve dans une zone écosensible.
Un nouvel outil à leur disposition est lié aux
inquiétudes croissantes du public au sujet de l’empreinte carbone du projet, une pollution qui contribue au réchauffement climatique selon les scientifiques. La question qu’on se pose est combien
émet-on de gaz à effet de serre contenant le dioxyde
de carbone pendant chacune des tâches effectuées
dans un projet?
L’empreinte carbone et le réchauffement climatique mènent la liste des enjeux de cette décennie, et
presque toutes les juridictions principales élaborent
présentement des politiques visant la réduction de
ces émissions. Les entreprises américaines et canadiennes, par exemple, voient venir à l’horizon la mise
en place de systèmes de plafonnement et échange.De
plus, le gouvernement provincial de la Colombie-britannique a mandaté que toutes ses villes soient neutres en carbone par l’année 2012 -, qu’elles trouvent
par exemple des façons de compenser pour leurs
émissions de carbone afin que l’effet net sur l’atmosphère soit neutre.
Le chapître de la C-B. de la North American Society
for Trenchless Technology maintient que l’emploi de
la technologie sans tranchée veut dire moins d’émissions de carbone que celles générées par les procédés
typiques à ciel ouvert.
David O’Sullivan, président sortant et membre du
conseil de NASTT-BC et président de P.W. Trenchless
Construction depuis 2000 déclare que l’emploi de
méthodes sans tranchée pour un projet de remplacement de tuyau peut couper les émissions de carbone
par un énorme pourcentage en comparaison à l’emploi de la méthode tranchée couverte. La différence
peut atteindre 90% affirme O’Sullivan.
Un élément important qui prouve que la technolo-
NASTT/GLSLA - Rapport Sans tranchée - 2009
45
gie sans tranchée est plus écosensible que la méthode conventionnelle de tranchée à ciel ouvert est la
quantité prodigieuse de carburant requise pour
enlever, déplacer et replacer la terre dans l’opération
conventionelle à tranchée couverte. Cette approche
contient de nombreuses étapes, enlever la terre, couvrir la tranchée, déplacer la terre et en disposer,
reprendre la terre et la remettre à sa place originale.
C’est facile d’imaginer combien d’énergie est nécessaire pour effectuer le travail, énergie réalisée par la
consommation de combustibles fossiles.
De plus, une étude effectuée par l’université de
Waterloo a démontré que les perturbations de la circulation causées par la construction le long des
routes produisaient des émissions excessives de la part des
véhicules automobiles. On a conclu que la construction sans
tranchée éliminait la plus grosse
partie du problème en réduisant
les encombrements à la circulation.
« La réduction des opérations
tranchée à ciel ouvert réduit la
quantité de terre déplacée à des
sites de dépotoir à ciel ouvert et
réduit aussi la reprise de matériaux par la suite pour remplir la
tranchée, O’Sullivan a récemment déclaré dans un magazine
de construction. Ceci réduit
les émissions des camions. »
et le chemisage, le réparage sur les lieux et l’injection
de coulis.L’application peut aussi évaluer combien
les solutions sans tranchée peuvent réduire les émissions de carbone.
Le calculateur de carbone a été développé pour
NASTT-BC par un étudiant en ingénierie de l’université de la Colombie-Britannique. Cet outil est
disponible en ligne depuis janvier 2008. Depuis sa
mise en service, son emploi inclut la production de
données pour apuyer des propositions visant à
obtenir du financement public pour des projets à
faible taux d’émission de carbone.
Le magazine Underground Construction a fait une
sortie d’essai du calculateur de carbone en entrant les données
nécessaires pour l’installation
hypothétique de 1 000 pieds de
tuyau à diamètre de 12 pouces
sous de l’asphalte. Le calculateur
de carbone a calculé qu’une construction conventionnelle à ciel
ouvert produirait plus de 700
tonnes de CO2 alors qu’une intervention par l’entremise de techniques de tubage et éclatement en
produirait dix fois moins.
Peu importe ce que vous croyez
du réchauffement climatique, il
est important que l’industrie de la
construction se soucie de son
David O’Sullivan président de P.W.
impact sur l’environnement, de
Trenchless Construction
son efficacité à la tâche et de
son image auprès du public.
Le site web NASTT-BC www.nastt-bc.org vous offre
un outil pour calculer de combien on peut réduire les
« Même si vous ne croyez pas à la réduction de carémissions de carbone produites au cours d’un projet
bone comme concept et vous pensez que c’est une
si on le mettait en oeuvre en employant la technolomachination du gouvernement, je crois que vous
gie sans tranchée au lieu de la méthode conventionserez d’accord que nous devons réduire notre connelle à ciel ouvert. Le « calculateur de carbone »
sommation d’énergie, disait O’Sullivan dans un articomme on l’appelle, est le premier outil en ligne de
cle récent de Trenchless International Magazine. Si
la sorte pour comparer la technologie sans tranchée
nous sommes en mesure d’employer certaines méthà l’excavation traditionnelle.
odes de construction qui peuvent réaliser de telles
épargnes d’énergie tout en maintenant notre niveau
En bref, voici comment fonctionne le calculateur
de vie, alors nous devons changer. »
de carbone: on entre les données de base du projet et
on répond aux questions à propos de détails pertiO’Sullivan espère que la construction sans
nents au projet : il évalue la taille de l’empreinte cartranchée deviendra « la méthode accéptée de conbone du projet en termes de tonnes de dioxyde de
struction souterraine - pas seulement une possibilité
carbone (CO2) émises. Le calculateur de carbone
à envisager quand les conditions rendent l’opération
évalue les émissions de carbone qui auraient lieu
difficile. » Le calculateur de carbone assistera à la
avec trois différentes sortes de construction sans
tâche. S
tranchée : le forage horizontal, le tubage/éclatement
46
NASTT/GLSLA - Rapport Sans tranchée - 2009
09.pdf
1
Lancement d’un Outil
interactif d’aide à la décision
pour le renouvellement des
infrastructures souterraines
14/09/09
2:26 PM
Isabel Tardif, Directrice, CERIU
Note de l’éditeur :
ructures: Il nous fait plaisir de vous
re built on 15 years of experience
9
bec
ructures
ue
présenter cette section en
français au profit de nos membres francophones nombreux et
nous voulons remercier les contributeurs et les commanditaires
qui ont rendu cet effort possible
ainsi
que
le
travail
par
Traductions JMH Translations.
Nous encourageons toutes les
contributions à la section
française du magazine dans les
parutions à venir. Pour plus
d’information s’il-vous-plaît contactez moi à [email protected]
ou signalez le 204.255.6524.
Paddy O’Toole, Éditeur, PTR
Communications Inc.
a réhabilitation des infrastructures souterraines
représente un enjeu de taille
pour les municipalités du Québec
qui participeront au Programme
de renouvellement des conduites
d'eau potable et d'eaux usées
(PRECO). Pour cette raison, le
CERIU vient de lancer sur son site
Internet (www.ceriu.qc.ca) un
outil interactif d’aide à la décision
pour la réhabilitation des infrastructures souterraines.
L
Réalisé par le CERIU avec l’appui
des membres du Conseil permanent Infrastructures souterraines,
cet outil s’adresse d’abord aux
ingénieurs et techniciens municipaux qui cherchent à développer
une meilleure connaissance des
différentes techniques de renouvellement des conduites souterraines. Pour chaque réseau, cet
outil interactif propose le type
d’interventions adéquates ou possibles en fonction des déficiences
et des situations observées.
En raison de l’interactivité de
l’outil, l’utilisateur pourra, en
répondant aux questions posées
sur les déficiences et les situations
observées, suivre un cheminement
qui l’aidera à poser un diagnostic
sur l’état des conduites d’eau
potable ou d’égout. Par la suite,
étape par étape, l’utilisateur
évoluera dans un arbre décisionnel qui l’amènera à se familiariser
avec l’ensemble des possibilités
qu’offrent les techniques de réhabilitation des conduites et ce, afin
de sélectionner les techniques de
réhabilitation qui répondent le
mieux aux exigences de son projet
de renouvellement. À la fin du
processus, il pourra procéder à la
révision complète du processus de
prise de décision.
Il est à souligner que chaque
technique de réhabilitation proposée par le biais d’une fiche technique, précise l’objectif de l’utilisation, le procédé, les types de conduites ou d’ouvrages sur lesquels la
technique s’applique de même que
les conditions et limites d’application qui la caractérise.
Rappelons l’utilité de ce nouvel
outil qui cadre avec la volonté gouvernementale exprimée dans la
Politique nationale de l’eau qui
incite l’ensemble des municipalités
à atteindre un taux d’utilisation
des techniques de réhabilitation
des réseaux de 25% par rapport au
taux de remplacement.
NASTT/GLSLA - Rapport Sans tranchée - 2009
47
48
NASTT/GLSLA - 2009 Trenchless Report
Using New Technology to Locate
Large Diameter Sewers and Avert
Potential Disaster
David Crowder, CET, R.V. Anderson Associates Limited
Gerald Bauer, P.Eng., R.V. Anderson Associates Limited
and John Scaife, P.GEO., Multiview Locates Inc.
David Crowder
he public generally does not realize that below
the streets of large cities lay enormous
labyrinths of large diameter sewer pipes. These
large diameter trunk sewers serve as a city’s critical
conduits to convey wastewater to sewage treatment
plants. As old buildings are demolished to make room
for new, larger buildings with deep foundations and
multilevel underground parking garages, there is a
real danger that these vital underground sewers can
be damaged.
One of the most pressing problems facing design
engineers who are planning new structures is the
lack of accurate records necessary to determine the
location of these large sewers. Since most of the sewers were constructed decades ago, many constructed
in tunnels, often the only information available is
schematic representations or old sewer maps without current references. Furthermore, these large
diameter sewers often have manholes spaced much
further apart than those of smaller diameter sewers,
which makes it difficult to interpolate an alignment
and further complicates the location process. In some
cases, the old sewer accesses are now covered over by
a parking structure, building foundation, or are situ-
T
Accurate sewer locating prevents accidental damage
during drilling
ated in a location where any access is a challenge.
Subsurface Utility Engineering (S.U.E.) is defined
as a process used by engineers to certify the location
of underground utilities by assigning quality levels
to all gathered utility information. These quality levels range from Level A (physical exposure and visual
confirmation) through to Level D (historic records
search). This process can also be applied to determine the location of large diameter sewers underneath buildings in a large urban area. By reviewing
secured utility information at each quality level a
comprehensive understanding of the position of
deep sewers is possible.
NASTT/GLSLA - 2009 Trenchless Report
49
To physically determine the location of underground facilities, including deep sewers, typical
methods include:
• Vacuum Excavation;
• Ground Penetrating Radar (GPR); and
• Electromagnetic Field Detection Technology (EM).
Vacuum Excavation uses suction to remove soil
through a hose, exposing a buried utility or a sewer.
These tools work extremely well for defining shallow
(less than 5 metre) deep utilities, but have limitations for defining deep sewers since they can typically only remove material to depths of 7 metres.
However, a more practical drawback is the inherent
uncertainty that the excavation will be over the centre of the sewer. It may be necessary to advance several holes or a short trench to accurately locate an
undefined sewer. These activities are time consuming, especially if the large diameter sewer has several
bends throughout a building site or project area.
Ground Penetrating Radar (GPR) is a method that
emits pulsed high frequency radio waves into the
ground and can map utilities and sewers by reflecting energy off these targets. However, the electrical
properties of the ground typically absorb GPR energy (especially clay minerals) which reduces the
exploration limit of any GPR system to a few metres,
not ideal for mapping deep sewers. These systems
also require direct access to flat ground, of which
there may be limited availability in an urban
streetscape environment. This method is also difficult to apply indoors due to the signal interference
caused by reinforced concrete floors.
Electromagnetic Field Detection (EM) is the most
common method for conductive utility detection
and can be used to locate open conduits or sewers by
advancing a transmitting sonde through the target
line. For locating deep, large diameter sewers this
process can be achieved by walking a sonde (transmitter) along the top (or obvert) of the sewer while
the position of the sonde is determined by a technician on the surface with a receiver. As the sonde is
carried through the sewer, the centerline is established by the surface technician who will mark the
ground with paint (outdoors) or tape (indoors).
These points are surveyed to create an alignment,
which can then be incorporated into the design
drawings to show any potential conflicts with future
building structures.
Where large diameter sewers are not suitable for
man entry due to high flow, lack of oxygen and
50
NASTT/GLSLA - 2009 Trenchless Report
Sonde in pipe emits EM field to technician above who
marks sewer location
health and safety issues, or are slightly too small to
walk through, then a robot can be used to transport
a sonde down a sewer. This requires the robot to be
modified in order to allow the sonde to be lifted up
to the obvert of the pipe. For very large diameter
sewers, this can be more challenging as the robot
can become unstable. The other disadvantage is that
you can only locate the centre line of the sewer. In
some cases, when trying to confirm the actual location along a radius bend, it is important to locate
both sides of sewer pipe walls.
CASE STUDY:
LOCATING A 100-YEAR-OLD SEWER
R.V. Anderson Associates Limited (RVA) and
multiVIEW Locates Inc. (multiVIEW) combined
technical resources and expertise to accurately
locate a 1.9 metre diameter, 6.21 metre deep brick
sewer, beneath an existing building that was slated
for demolition (where the distance between the
entry manhole and the next downstream manhole
was 800 m. RVA required the precise horizontal and vertical position of the sewer in order to
assure that proposed caissons that
were required to support a new
building would not intersect with
the existing sewer. This active
sewer had to remain in service
and had to be located before the
City would approve the pending
construction project.
The first step in the SUE process
is Level D or a records search.
Since the sewer was built more
than 100 years ago, very limited
record information was available.
There were no detailed record
drawings and the sewer maps provided by the City showed the
sewer’s general location without
any current references. The Level
C site reconnaissance found that
the only access manhole was
located in front of the subject
property. It was further noted that
this access was not simple because
the manhole was nearly 6 metres
deep and posed a safety hazard due
to the access ladder’s poor condition. The project team determined,
however, that a safe sewer entry
was possible and contacted the
owner for permission.
For the Level B geophysical
study, the project team chose electromagnetic field detection technology (EM) to locate the sewer,
since a portion of the sewer was
below an existing building, preventing GPR access. The on-site
set-up took approximately 1.5
hours and included reviewing
confined space entry (CSE) safety
procedures before entry. A technician with a receiver unit stayed on
the surface. Additional team
members used portable tripod
equipment and CSE procedures to
lower personnel into the manhole. To protect against the poten-
tial hazards of sewer gases, the
technicians carried gas detectors
and wore self-contained breathing apparatus.
A calibration procedure was
then completed to evaluate the
effect of local signal interference,
which would cause errors in
depth approximations and the
inferred sonde location signals to
wander. The surface technician
compared the signal from the
sonde to the field measured depth
of the sewer crown in the manhole. This calibration information
was critical for the surface technician in order to accurately infer
the subsequent positions of the
sonde.
The accuracy of the surface
readings depends on the skill and
experience of the technician in
isolating the target electromagnetic field from all the spurious
NASTT/GLSLA - 2009 Trenchless Report
51
findings with paint marks on the surface to clearly
mark the sewer alignment. While tracing the sewer as
it passed underneath the existing building, the alignment was marked indoors on the floor with tape. The
entire alignment was then subsequently surveyed and
incorporated into the design drawings.
Once the alignment of the existing sewer was established, it was determined that there was a positional
conflict with the existing brick sewer and the proposed position of the foundation caissons. The City
of Toronto representatives requested an inspection
after the builders drilled the caissons and before construction started to ensure that there was no structural damage. A SUE Level A visual inspection confirmed
that no caissons penetrated the brick sewer. The locating of large diameter sewers requires using existing
technology and applying them to suit the needs for
the project.
This project success was due to the partnership created between RVA and multiVIEW to accurately locate
and prevent possible damage to this delicate brick
sewer. The combination of RVA’s engineering strength
and multiVIEW’s geophysical survey experience permitted the caissons to be installed while preserving
the integrity of the 100 year-old sewer. S
David Crowder using sonde in sewer pipe
and secondary fields produced by underground
facilities in an urban environment. The surface technician began confirming and evaluating the signals
while personnel held the transmitting sonde at the
crown of the pipe. Once the technician confirmed
and calibrated the signal, the personnel inside the
sewer proceeded along the sewer at intervals of five
metres to accurately capture points along the radius
bends.
Radios do not work well underground, so a technician was stationed at the bottom of the manhole to
serve as a communication link between those on the
surface and those in the sewer. The surface technician was advised when the others reached each 5
metre interval or a bend in the sewer. To ensure that
the bends were accurately located, the technician on
the surface took several readings and annotated his
52
NASTT/GLSLA - 2009 Trenchless Report
David Crowder, CET is the Manager of Field Services for
R.V. Anderson Associates Limited
([email protected]).
Gerald Bauer, P.Eng is the Branch Manager for the R.V.
Anderson Associates Limited, Ottawa office
([email protected]).
John E. Scaife, P.Geo. is the Director of Business
Development for multiVIEW Locates Inc., a Mississauga
based firm offering utility locate management, private
locates, engineering locates and subsurface utility engineering (SUE) services.
Infrastructure
Environment
Communities
Facilities
Providing trenchless technology services
for industry and municipal infrastructure
www.dillon.ca
CAse sTUDY:
City of Hamilton’s Three-Year CIPP
Water Rehabilitation Program
Michael Zantingh, Infrastructure Programming Technologist, City of Hamilton, Hamilton, Ontario, Canada
INTRODUCTION
The City of Hamilton has
approximately 2,100 km of watermain. The majority of the water
infrastructure is cast iron or ductile iron. Approximately one per
cent of the watermain network
requires replacement or rehabilitation each year. Annually, that
amounts to 21 km of the system.
In understanding the needs in the
system, it would be very difficult
to fund the renewal of 21 km of
watermain using the traditional
open cut technology. This issue
required the City to expand its
toolbox to find innovative and
cost-effective strategies to renew
its water infrastructure.
By examining various product
options in the industry, the City
found that the CIPP technology
offered an ideal solution to its
water infrastructure needs. The
City had experienced success in
the past using the CIPP sewer lining product and foresaw the capability of the CIPP product to work
well on its water system.
Understanding that sewer and
water systems are inherently different, the City felt it best to
investigate the water CIPP product by implementing an in depth
pilot study.
Through its evaluation of the
performance of the CIPP liner, the
City found many benefits of using
the product in its water system.
The main benefit was extending
the life of the asset. The relining
of watermains would provide the
City with a hybrid product and
the ability to give deteriorated
cast iron watermains new life. The
lining also provided an opportunity to defer the replacement of
the relined watermain by 40 to 50
years. The use of CIPP lining
would also help in minimizing
the impact to surrounding infrastructure by reducing the need for
open cut replacement.
PILOT STUDY
To better understand AquaPipe® CIPP technology, the City of
Hamilton conducted a pilot study
in 2003. The study involved the
selection of a site location based
on set of criteria determined by
the City. The two primary criteria
included the length of a watermain run and its maintenance
history, including breaks. The
watermain had to have a high
break history, which indicated
that the watermain was most likely structurally deficient. Since the
Aqua-Pipe® CIPP product claimed
to be fully structural, it was imperative to choose a watermain that
was in a deteriorated condition in
order to quantify the ability of
this product to eliminate or
reduce breaks.
West 2nd Street in Hamilton
was ultimately chosen for the
pilot study. In the preceding four
years prior to 2002, the watermain on this street had five
known breaks over approximately
1000 m of watermain, which was
an ideal length and maintenance
history for the test project. The
City was able to remove the
required samples for the first 500
m and leave the remaining 500 m
undisturbed for future monitoring and testing.
The work was carried out in the
fall of 2003 and samples were sent
to the University of Western
Ontario (London, Ontario) and
Queens University (Kingston,
Ontario) for further testing. As
part of the project, the City of
Hamilton, University of Western
Ontario, and Queens University
signed a research agreement to
carry out a three-year research
review. The research involved a
number of initiatives,including
longevity testing of the liner within the host pipe.
The research revealed positive
results, which provided the City
with reasonable confidence in the
long-term performance of the
Aqua-Pipe® CIPP product the City
used. Furthermore, monitoring
of the watermain lining under the
pilot project in 2003 quantified
an elimination of leaks caused
from breaks in the cast iron.
The pilot program found that
Aqua-Pipe® CIPP is a fully structural product that will increase
the service life of a watermain by
40 to 50 years. The installation
process reduces the social cost and
the impact to surrounding infrastructure and the product in most
NASTT/GLSLA - 2009 Trenchless Report
53
cases provides a greater life cycle
cost benefit.
PROGRAM DEVELOPMENT
Once the pilot project was completed, the City rolled out its
structural lining rehabilitation
program in 2005. Building on the
success of the lining in 2003, the
City developed a three-year term
contract, modeled after the sewer
lining contract. The sewer contract, an evaluated Request for
Proposal, was designed to maintain low management costs, complete a large volume of work, minimize capital costs and hold the
contractor accountable.
The Basis of Selection of the
contract is divided into two inde-
Table 1 - Technical Evaluation Criteria
criteria
Ability to perform the work
technical aspects evaluated
- The proponent’s history carrying out the same or
similar type and magnitude of work.
- Includes time and budget management, knowledge of
the City’s requirements & procedures, understanding of
the contract standards & specifications, communication
management etc.
Financial Capability
Staff Experience
- The firm's financial stability including bonding capabilities.
- The experience and ability of the specific staff that
have been identified by the proponent to manage
this type of work.
Work Plan, Organization
and Customer Service
- The proponent’s ability to produce an effective work
plan and organize themselves in such a way as to
provide strong customer service to both City
management and the general public.
Material and Methodology
- The proponent’s ability to provide a quality product
with sound installation practices.
- This includes QA/QC, operation, and corrective
measure procedures along with detailed documentation
on the products safety requirements, physical properties
and proposed designs which all must meet the
minimum requirements of the technical specifications
described in the tender.
Table 2 – Score Break Down
criteria
Ability to perform the work /
Health and Safety
Financial Capability
Staff Experience
Work Plan, Organization,
Customer Service,
Materials/Method
Total Points
Bid $
54
evaluation Points
maximum score
Bid “a”
35
34
15
15
15
15
14
13
20
100
$
14
90
$1,225,000
NASTT/GLSLA - 2009 Trenchless Report
pendent phases. During the first
phase, an evaluation team consisting of four Public Works staff
members who independently performed a technical evaluation of
each submission (see table 1 and 2
for more details). The City’s
Purchasing Department retains
the sealed bid price envelopes, as
received from contractors, until
the technical evaluations are
completed.
The second phase connects the
technical evaluations with the bid
price. A meeting is held with the
evaluation team to compile the
scores. The four technical scores
from each member of the evaluation team are tallied and a consensus score is assigned to each
submission. The contractor needs
to obtain a minimum score in the
evaluation of their proposals to
move onto the next phase. If the
minimum score is not obtained,
the bid is discarded. Once this is
complete, the bid envelopes are
opened and the contract awarded
to the lowest bidder achieving an
acceptable evaluation score (See
Table 1).
Each criterion is weighted to
achieve an overall score of 100
(See Table 2).
The contract is designed to
achieve four primary objectives:
1.Balance the cost of the work
with the quality.
2.Move from the traditional project-based contract to a programbased contract
3.Allows the City to address issues
that occur on a neighbourhood
level.
4.Hold the Contractor accountable to its evaluated performance level, through annual
reviews.
In 2006, the City tendered its
first three-year term contract and
received one bid. The contractor
passed the evaluation and the contract was awarded,
work started in June 2006 and ended in late October
2006. Over the three years they were under contract
with the City, 19 km of watermain were structurally
lined in seven different neighbourhoods.
LINING PROCESS
The structural liner used by the City was Aquapipe,
manufactured by Sanexen Environmental. The liner is
a woven polyester liner made in two parts. The first
part is the outer woven polyester jacket. The inner
liner is the woven polyester liner with a Polymeric
membrane fused to it. The Polymeric membrane
ensures water tightness.
The first step in the installation process is the
locating of all buried infrastructure, which is the
responsibility of the contactor. Once all the utilities
are marked clearly, the contractor will lay a temporary bypass piping system in order to supply continuous water service to residents. Bypass is needed, as
the rehabilitation process requires that the watermain
be taken out of service. The bypass is tested to ensure
water tightness and that it has been properly disinfected, similar to that of new watermain systems.
Figure 1- Typical Road Set Up
Once bacteria testing is completed and the bypass
is cleared for use, the mains are shut down by City
crews. The contractor identifies access locations and
will then excavate the pits. The access pits are generally located at main intersections, valves, hydrants
and tees, etc. Shoring is required to ensure safety for
the crew while working in the access pits as defined
by locate Health and Safety regulations. Access pits
are generally located approximately 50-100 m apart.
Figure 1 is a view of a typical access pit set up.
Once the access pits have been installed, the
preparation stage begins, with the watermains being
opened up and dewatered. Crews start by scraping
the mineral build up off the inside of the pipes. A
CCTV inspection is conducted to ensure that the
pipe is completely clean. When the inspection is
complete and the watermain is clean, the operator
will cap and record all the service main stops. The
capping is done robotically from the inside of the
watermain, and necessary to prevent the epoxy resin
from migrating up the service main stop. If resin
does migrate up the main stop, it causes a blockage
of the service which will require extraction and
replacement of the main stop. Upon completion of
the preparation stage, the watermain is ready for the
liner to be installed. In order for the liner to cure
properly, the host pipe needs to be dry. This is
achieved by removing excess water with a series of
swabs passed though the host pipe.
The epoxy resin impregnation of the polyester
woven liner is completed on site with a refrigerated
truck to ensure that there is adequate time to install
the liner in the watermain. Once the liner is
impregnated, it is pulled into the watermain via a
winch for the adjacent access pit. As the impregnated liner comes off the back of the refrigerated truck,
the liner goes though a series of rollers. These rollers
squeeze the excess resin out and distribute the resin
evenly within the polyester woven jacket.
When the liner has been received in the joining
exit pit, a swab is launched under water pressure
through the liner. The swab is pushed though the
liner in order to form the liner to the host pipe.
Once the swab has reached the receiving pit, hot
water is circulated through the pipe in order to cure
the liner. Curing time for this product is approximately three hours however that will vary depending on the size of the host pipe and the resin volume. After the liner has cured, the reinstatement of
the service connections begins.
Reinstatement of service connections is completed
via robotics from within the newly lined watermain.
Crews operate the robotics to drill out the services
removing both the polymeric woven liner and service plug installed during the preparation stage. The
drills are operated with the use of a CCTV camera
mounted to the drill skid. Services are identified by
the protruding main stop and through the recorded
information from the pre-lining inspection. Figure
2 displays the operator’s view of a watermain while
reinstating a service.
After all the services have been reinstated, the
watermains are reconnected using traditional closure pieces. The lined watermains are then disinfected and bacteria testing completed, in order to put
them back into service. The site is cleaned and final
restoration is completed. Upon completion of the
NASTT/GLSLA - 2009 Trenchless Report
55
Figure 2 – Service Reinstatement
project, the contractor provides the City with both a
pre and post CCTV inspection. The City reviews all
videos to ensure the quality of the interior to the liner.
CONCLUSION
A CIPP product, once installed, provides a hybrid
piping product, prolonging the life of the asset
approximately 40 to 50 years. Use of a CIPP reduces
the maintenance cost. Since the beginning of the
project, City maintenance staff has begun to notice a
reduction in breaks within the distribution network.
We will continue to monitor breaks to see if this trend
continues; however, it is still too early to provide any
hard statistical data to support this observation.
The City’s contractor enjoyed a positive working
relationship with the City, which is a key component to the success of any project. As with any relatively new product, further refinement is required to
improve the overall benefits of the CIPP. These
refinements can only come from practise and a willingness to improve on the part of utility owners,
installation contractors and product manufacturers.
The City continues to work with all parties in the
trenchless rehabilitation industry to improve the
benefits of these types of products. S
REFERENCES
Allouche, E., Bainbridge, K., and Moore, I. (2005).
Laboratory Examination of A Cured-In-Place
Pressure Pipe Liner For Potable Water Distribution
56
NASTT/GLSLA - 2009 Trenchless Report
Pipes, North American Society for Tranchless
Technology, No-Dig Conference and Show, Paper D3-04.
Auger Boring Through Hard Rock:
Overcoming the Challenge
ard rock is the true nemesis to the auger boring contractor. The evolution of auger boring
expertise, and its increased recognition of
being a more widely used and understood method
of underground technology, has introduced disc
cutter head product tooling. The disc cutter concept
borrows, on a smaller diameter platform, the cutting
method that large tunneling machines utilize to
rotate, fracture, and remove rock chip spoils from
the bore path.
Manufacturers like American Augers are developing and seeing field proven results in their version of
the disc cutter head. One example of creating success
with man, machine, and technology is an August 2007
auger boring job in Doylestown, Pennsylvania through
an unyielding rock formation.
The contract in Doylestown, Pennsylvania called
for the Case Boring Corporation from Gasport, New
York, who was subcontracting through Henkels and
McCoy, to install a 120 foot (37 m) long gas pipeline
under a two-lane roadway. Confronting the span of
the bore was a sandstone deposit that the disc cutter
was more than capable of surmounting, as the engineering design is suitable for intrusive rock formations up to 25,000 PSI (1,724 bar).
H
“The AA (American Augers) disc cutter head was
the exact right choice for the job. It was effective
and productive in both solid and much fissured
rock, the type of rock that can give a boring contractor fits with other types of tooling,” said Mark Case
from Case Boring Corporation.
The Case Boring crew created a 50 foot (15 m) long
and 9 foot (3 m) deep shored pit, operating on 30
Rob Foster, American Augers
feet of auger boring extension track, that would set
the stage for either achieving success or create a
project deficiency in less than ideal conditions.
From the perspective of the contractor, the advantage to using a disc cutter head is that the unit is
mounted directly to the product casing, which
enhances cutter head stability and allows for longer
cutter life. The individual cutters are manufactured
with high strength steel that allow for increased
working life, as during use they perform a rolling
motion that creates no friction, and benefits the
operator by maximizing performance in various geological formations and are designed to withstand
the severe loading of mixed face conditions.
Disc cutter heads have the ability to be industry
wide contributors because they are compatible to
any make or model of auger boring machine and
auger section that is fitted with a 4 inch or 5 inch
(102 or 127 mm) hex.
Using a 1990 model of a 60-1200 auger boring
machine and a brand new 36 inch (914 mm) diameter disc cutter head, both manufactured by
American Augers, the Case Boring operator began
the diligent effort of pushing the product through
the sedimentary landscape at a steady rotational
speed. Maintaining consistent speed in a slow, but
optimum range of 17 – 25 RPM allows disc cutter
heads to work through the bore at a pace that
ensures a steady flow of the rock cuttings, and prevents any significant hindrance to the spoil return
process. For this job, the spoils varied from a powdery
dirt substance to finger nail clipping size remnants.
NASTT/GLSLA - 2009 Trenchless Report
57
penetration of the rock wall. This practice is typical
for most disc cutter head jobs, because the critical
nature of the cutters first contact with the earthen
embankment will create some vibration, which if
not supported or monitored, could cause the line of
the bore to be compromised. The excavator was
withdrawn shortly after the entire disc cutter had
disappeared into the formation, and the vibration
ceased, as the head and the product casing was now
shrouded in the compact composition of the earth,
and the operators of the bore had settled the
machine into a “sweet spot” that would allow them
to steadily progress.
The RPM rate must be balanced to coincide to the
thrust pressure being produced by the auger boring
machine. Throughout the total distance bored the
auger boring crew had to keep a careful eye on the
variable factors that influence the amount of thrust
to apply including: PSI level of the rock being cut,
total size of the bore, rate of spoil return, diameter of
the cutting head, and overall machine torque output
and speed. This bore maintained a variable output
of 220,000 ft-lbs. of thrust.
An excavator was also introduced, as the excavator
bucket was placed on the product casing in close
proximity of the disc cutter to apply pressure and aid
in the stability of the cutter, as it made the initial
58
NASTT/GLSLA - 2009 Trenchless Report
The bore was done at zero percent grade, but if maintaining line
and grade was required the disc
cutter is equipped with power
assisted steering jacks, which promotes steering corrections that
can be made with ease.
In total, it took one and a half
days to complete the bore. Not
using the disc cutter would have
made a traditional auger bore difficult and time consuming.
“Using conventional product
tooling this bore would have been
possible, but we may have only
been able to bore five to eight feet
(1.5 – 2.4 m) per day,” said Jim
Lee, an American Augers Field
Service Technician who was present during the bore. “ I know
from experience using a traditional rock cutting head in that type
of sandstone would have required
constant maintenance in replacing the carbide bullet tips every
two or three feet (0.6 – 0.9 m).”
Supporting Jim Lee’s remark,
Mark Case commented, “Without
American Augers.indd 1
the disc cutter the bores would
have taken three times longer to
complete, involving considerable
retooling and time spent pulling
and reinserting the auger. The
head turned very easily, greatly
reducing wear and tear on our
auger string and drive train.”
Auger boring and its associated
equipment or tooling, such as disc
cutter heads, are typically less
expensive and reduce downtime
more so than other methods,
such as micro tunneling, and the
conventional practice of open
trenching. In neighborhoods,
metropolitan zones,
wetlands/waterways, and in infrastructure development (i.e. roads,
railways, existing utility) areas
auger boring creates less physical
disruption and can save a considerable amount of expense on product installation, reduce restoration
costs, and provide a tremendous
amount of goodwill to the community and its inhabitants.
Another down time limiting
factor for disc cutter heads is that
the large diameter of the head
allows the head to retract from
the face without moving the
product casing. Having the cutting head be retractable also
allows for cutter change and servicing that can be accomplished
outside of the heading.
Auger Boring itself is a test of
both man and machine, but when
those two factors are confronted
with tough ground formations
that can stress human emotions
and mechanical muscle, the real
test is how utilizing proven practices and today’s technology, such
as disc cutter heads, can prevail in
complicated situations.
“The disc cutter head will allow
us to make bores in a much more
cost effective way than ever
before. We will be able to entertain boring longer crossings than
ever before due to the easy turning nature of the head and the
unique steering advantages the
head give us,” said Case. S
NASTT/GLSLA - 2009 Trenchless Report
59
9/29/09 4:01 PM
Structural Lining of Watermains in the
City of Ottawa Returns to its Roots
Todd Penfound, C.E.T., City of Ottawa & George Blow, P.Eng., Robinson Consultants Inc.
BACKGROUND
The City of Ottawa has been using structural lining
since 2001 as a part of their ongoing watermain
renewal program. In October of 2001 Ottawa became
the first city in Ontario to have a new structural liner
system installed in their water distribution system.
The pilot project included the structural lining of 1.5
km of 152 mm cast iron watermain within the
Crystal Beach sub-division in the west end of the city.
Over the course of the past 8 years, close to 30 km of
watermain has been lined in various neighborhoods
throughout the city. This represents a small portion
of the over 1,000 km of cast iron watermains in use in
the City’s water distribution network, which includes
over 2,500 km of watermains. In 2009, the annual
lining program continued in the Lakeview area, a
sub-division immediately adjacent to Crystal Beach.
plaints. Regular flushing of the watermain was
required in response to the frequent complaints from
residents. The existing roads and sewers are all in
good condition, with an estimated remaining life of
over 20 years. These factors, in combination with the
greatly reduced impact of trenchless construction on
the daily lives of local residents, made this area an
ideal candidate for trenchless rehabilitation.
A fully structural cured-in-place pipe (CIPP) solution was selected for this project in order to prolong
the life of the partially deteriorated host pipe. The
requirements of the structural lining system included
a design to meet the ASTM F1216 standard and an
epoxy resin with a NSF Standard 61 approval.
Project Area
THE LAKEVIEW PROJECT
In November of 2008, the City retained the
Robinson Consultants Inc. team to evaluate the suitability of a trenchless solution and to provide design
services for the rehabilitation of the watermains in
the Lakeview Park area. The City of Ottawa uses various criteria in selecting areas where structural lining
of watermains is undertaken. In the case of the
Lakeview area there is 3.7 km of 40 year old cast iron
watermain ranging in diameter from 150 mm to 305
mm. Older unlined cast iron watermains can develop
internal buildup or tuberculation caused by internal
corrosion that can lead to reduced hydraulic capacity
and “red” water problems. As a result of this tuberculation, the Lakeview area had been the source of
numerous watermain leaks and “red” water com-
60
NASTT/GLSLA - 2009 Trenchless Report
Open Cut Construction
During the design phase of the project, an open
house was held at a local community center and was
very well attended by local residents. Once the lining
process had been explained to all in attendance there
was overwhelming support among the local community for the project. This support continued throughout construction, and positive feedback from local
Trenchless Construction
Inverted Liner at Access Pit
residents was provided on a regular basis because of
the very limited disruption caused by excavation,
dust and noise.
The size of the project required that construction
take place in three phases in order to limit the area
requiring temporary water services. Once the temporary services were set up and tested, the watermain
was isolated, cleaned, and a CCTV inspection was
performed in order to verify the condition of the pipe
and locate bends or reducers that could not be lined
through. During the CCTV inspection, plugs were
inserted into the service connections to allow for
later reinstatement by preventing resin from migrating into and blocking the service connections.
position through the host pipe. The use of inversion
lining on this project represented the first use of this
method during the eight years of the lining program
in Ottawa, as all previous lining projects had taken
place using the pull-in method.
Once the liner was in place between each access pit,
the curing process was begun by injecting steam into
the lined pipe. The process of heat curing took approximately three hours with the temperature increasing up
to approximately 90 degrees Celsius over a one hour
period followed by a two and a half hour setting or curing period. Individual lining sections were completed
in lengths of between 75 m and 160 m.
Once the new CIPP liner had cured, a hydrostatic
pressure test was completed to ensure a leak-free final
product. Following successful completion of the
pressure test, the service connections were reinstated
from inside the pipe using a remote controlled robotic cutting tool. The robotic tool cuts through the
liner and removes the plug that was inserted during
the CCTV inspection stage so that service connections are reinstated without additional excavations.
In addition to the lining portion of work, all existing valves and hydrants were replaced. The project
included the addition of valves at certain locations in
order to meet the current 300 m spacing design
requirements of the City of Ottawa. Additional fire
hydrants were also installed at closer intervals in
order to meet the requirements of the current fire
protection standards of 110-125 m spacing where the
existing spacing in some areas was as much as 310 m.
New magnesium anodes were also installed in all
excavations to provide corrosion protection to the
new valves and hydrants as well as external corrosion
protection to the host pipe.
Wet Out Procedure
The lining procedure includes liner impregnation
with epoxy resin, also known as the “wet out” procedure, insertion of the liner into the host pipe, and
steam curing of the liner. The wet out procedure
occurred on site and involved the impregnation of
the epoxy resin into the 2 ply felt liner with fiberglass
reinforcement. Insertion of the liner took place by
pushing the liner with compressed air in an inverted
BENEFITS OF STRUCTURAL LINING
The rehabilitation of the watermains in Lakeview
has been estimated to have saved over $1.5M, which
represents an approximate 40% cost savings over traditional open cut excavation. Taking into consideraNASTT/GLSLA - 2009 Trenchless Report
61
Robotic Tool Reinstating Service Connection
tion the length of watermains that
have been rehabilitated in the City
of Ottawa since 2001, the total
cost savings of the annual lining
program are estimated to be well
in excess of $10,000,000. In addition to both the capital and life
cycle cost savings, the reduced disruption to the water customers
and the community in general represents a significant benefit to the
use of trenchless rehabilitation
methods where circumstances
allow. Other benefits of the structural lining program include
reduced construction durations,
reduced impact on adjacent pavement structure and other utilities,
Liner Heat Curing Process
62
NASTT/GLSLA - 2009 Trenchless Report
improved water flow by a reduction in the internal
pipe friction, and a fully structural and corrosion
resistant watermain with an expected remaining life of
over 40 years.
While the Lakeview project will be continuing into
the spring of 2010, the project has been considered a
success thanks to the cooperation of all parties
involved, including Aqua Rehab who was the successful contractor for the project. The annual lining program and related cost savings is also considered to be a
success by the City of Ottawa, the consultant design
team of Robinson Consultants Inc., and Genivar, who
have been involved as partners in this program since
the beginning in 2001. S
PROVIDING WATERWORKS UTILITIES
WITH WHAT THEY WANT:
hDD InsTAllATIon WITh FAMIlIAr pIpe MATerIAls
Richard Botteicher, PE, Senior Products Engineer, Underground Solutions. Inc.
OVERVIEW
As water and wastewater utilities forge ahead with
rehabilitating and expanding aging infrastructure,
they are increasingly turning to trenchless installation methods to reduce cost and minimize disruption
to local communities. Horizontal directional drilling
(HDD) continues to grow in acceptance as more
waterworks utilities gain experience with the practice
and the number of skilled HDD contractors available
to perform the work, which continues to expand.
At the same time, pipe material choices in water
and wastewater systems have remained fixed. System
owners and operators would generally prefer to use
the same materials for HDD projects that they use in
the rest of their systems. Consequently, when steel
and high density polyethylene pipe are used, they are
often considered ‘specialized’ products for many
waterworks utilities. Today, the number of pipe products that may be installed by HDD are growing, and
bridging the gap between the requirements of the
installation methodology and the final product and
compatibility of that product with existing systems.
becoming more adept when it comes to HDD projects. Advancements in steering technology and
drilling equipment have improved the accuracy and
adaptability of HDD in varying strata and expanded
the scope of installed projects subject to HDD installation. HDD waterworks projects have gotten longer,
larger, and greater in scope for varied geologies and
site constraints.
HDD TRENDS
Recent surveys of utilities and engineering firms
throughout North America have confirmed the growing adoption of trenchless installation practices.
(12th Annual Municipal Survey, Underground
Construction, Feb. 2009) In many parts of North
America HDD has closed the installation cost gap versus direct bury, leading many utilities and design
engineers to contemplate some element of HDD during the design phase of their pipe projects. HDD
installations include such common applications as
potable water, sewer force main, reclaimed water, and
gravity sewer pipe projects. Of course, HDD is particularly well suited for difficult areas, like under rivers
or major highways, or highly urbanized and congested utility corridors where directional drilling is
viewed as a necessity.
Likewise, the construction industry has responded
to the increase in demand for HDD installations with
more experienced and well versed drilling contractors
and construction firms. Design professionals are also
PIPE MATERIAL TRENDS
Pipe market statistics clearly indicate that today’s
water and wastewater utilities prefer to use polyvinyl
chloride pipe (PVC), pre-stressed concrete, steel cylinder pipe (PCCP), and/or ductile iron pipe (DIP) for
the vast majority of their new pipe installations.
These three pipe products dominate the new pipe
market in the Great Lakes, St. Lawrence and Atlantic
region, as well as throughout the US and Canada.
The conventional means used to join all three of
these products is through the use of unrestrained,
bell-and-spigot ends and elastomeric gasket seals.
Unfortunately, when it comes to HDD installations,
the lack of restraint and severely limited axial flexibility (ability to bend) with such joints precludes them
from being used. In order to overcome these limitations new and innovative technologies and techniques needed to be developed.
According to the Ductile Iron Pipe Research
Association (DIPRA), the key for DIP was the development of flexible restrained joints. Allowable joint
Fig. 1 – HDD installation with layout shown
NASTT/GLSLA - 2009 Trenchless Report
63
deflections range from 3 to 5 degrees, depending on
the specific product. (HDD/1-06, DIPRA) Gripping
push-on joint gaskets that utilize locking stainlesssteel teeth segments are not recommended for HDD
installations. Joint deflections or relative rotation
between two pipe sections during installation with
these types of restrained joint gaskets can result in
leakage or possible joint separation. (HDD/1-06,
DIPRA)
For PVC pipe the HDD-friendly, restrained joint
options include heat-fused (Fusible PVC™ pipe, 4”36”) and grooved-spline PVC couplers (4”-16”).
Allowable joint deflections for grooved-spline couplers range from 3.8 degrees for 12-inch pipe to 11.5
degrees for 4-inch pipe. For Fusible PVC™ pipe, the
minimum bending radius equals 250 times the pipe
outside diameter.
PVC™ pipe can be more easily connected to predominantly PVC and DIP systems, and can be maintained
without the need for specialized parts, labor or connections.
The high tensile strength of Fusible PVC™ pipe in
combination with the full-strength of the fused joint,
smaller outside diameter, and lower weight per length
allows for longer pipe pulls, which means fewer pits
need to be dug. Fewer pits reduce energy consumption, environmental damage, and rehabilitation
costs. Fusible PVC™ pipe enabled the Beaufort Jasper
Water and Sewer Authority to contract with the
Mears Group who successfully installed 5,120 linear
feet in a single insertion -- the longest single HDD
pull of thermoplastic pipe in history -- beneath the
Beaufort River in South Carolina.
USING FUSIBLE PVC™ PIPE
FOR HDD INSTALLATIONS
The efficiency of a thermally fused pipe results
from the uncompromised exterior and interior pipe
diameter. The absence of substantial external protrusions, which come with bell-end pipes or restraint
couplings, greatly reduces drag. This facilitates
Fusible PVC™ pipe being pulled into HDD alignments
and eliminates the need to enlarge the bore-hole to
accommodate such external protrusions.
Fig. 3 – Fusible PVC™ pipe during insertion under the Beaufort
River for the Beaufort Jasper Water and Sewer Authority.
CONCLUSION
Thanks in large part to the continued evolution of
pipeline materials and HDD equipment, the HDD
installation process continues to gain wide acceptance in the water and wastewater industries. Pipe
materials, like Fusible PVC™ pipe, that combine a
common material in the waterworks market and a
joining methodology that is well suited for installation via tension, are leading the way to open up more
opportunities for HDD in the waterworks industry. S
Fig. 2 – Fusible PVC™ pipe low profile restrained joint
With more than one million feet installed by HDD
to date, in sizes ranging from 4” to 30” nominal
diameters, Fusible PVC™ pipe has shown itself to be a
proven material for HDD installation of water and
wastewater, pressure and non-pressure pipe infrastructure. Fusible PVC™ pipe provides a tensile
strength and flexibility for HDD installations that
allows it to fill the gap between the earlier HDD pipe
materials, steel (higher strength, longer bending
radius) and high density polyethylene (lower
strength, shorter bending radius). Moreover, Fusible
64
NASTT/GLSLA - 2009 Trenchless Report
Largest independent coater
serving the CIPP industry in North America
PU,PVC,PP,PE
Vertically Integrated or Tolling
Contact: Bob Collins
Technical Representative
[email protected]
PH: 819-346-5281 ext 222
CELL: 819-446-1805
Go Trenchless
with PVC
TM
z
Available in CIOD &
IPS sizes 4" to 36"
z
Achieves higher
flow rates
z
Connects directly to
existing PVC systems
for material consistency
z
Use standard CIOD
or IPS fittings
IPEX has introduced the new Fusible Brute and Fusible Series
PVC pipe for HDD and other trenchless applications. While other
thermoplastic materials have been fused routinely, our patented
fusion process incorporates a proprietary PVC formulation providing
the only available method of installing a continuous, monolithic,
fully restrained PVC pipe system. Fusible Brute CIOD and Fusible
Series IPS PVC pipe can be used for both pressure and non-pressure
applications in the water and sewer industries.
Tough Products for Tough Environments ®
Canada Toll Free: 1-866-473-9462 s
w w w. i p e x i n c . c o m
Swagelining:
HDPE Rehabilitation System for Large
Diameter Pressure Pipelines
Todd Grafenauer, AJM Pipelines
In the 1970’s, British Gas began the research, development and implementation of many of the trenchless technologies that are in use today. They did so
out of necessity to replace and rehabilitate their own
pressure distribution system with the criteria of cutting costs and increasing efficiency. The two most
well known methods, which now carry a history in
excess of over 30 years, are pipe bursting and
Swagelining.
The success of both methods is due in large part to
the existing utility path being followed. By using the
existing alignment, easement issues, environmental
factors and utility relocates are eliminated. This will
speed project delivery and can prove cost effective as
design costs will be reduced. During construction,
cost reduction and efficiency are also realized.
Restoration is kept to a minimum as only surgical
excavations are required and production rates typically far outpace that of traditional replacement.
Static pipe bursting has seen tremendous growth in
North America to replace pressure pipelines such as
water and force mains. The method has been credited as the only trenchless method in which increasing
the size of the main is possible, while still following
the existing utility path. The most common static
pipe bursting projects are for the replacement of
smaller diameter mains, between the sizes of 2”
(50mm) through 16” (400mm) in diameter. While
the method can be used to replace larger diameter
pipelines, the smaller size mains have been deemed
most appropriate from a feasibility and cost standpoint. Upsizing is also typically a requirement of
undersized mains, such as using pre-chlorinated
pipe bursting to replace 6” (150mm) potable water
main with a new 8” (200mm) main to meet fire flow
standards.
Swagelining has also seen tremendous growth
around the world to replace and rehabilitate pressure
pipelines such as water, sewer, gas, oil, mining, salt
water injection lines and off shore applications. The
most common Swagelining projects are for the
replacement of larger diameter pressure pipelines
66
NASTT/GLSLA - 2009 Trenchless Report
from 16” (400mm) to 48” (1200mm) in diameter.
While the method can be used to replace smaller
diameter pipelines down to 4” (100mm) in diameter,
the larger size mains have been regarded most feasible.
SWAGELINING OVERVIEW
Like the static pipe bursting process, Swagelining
involves installing a new HDPE pipe. However the
existing host pipe is not impacted while the new pipe
is installed. Swagelining allows a new, tight-fitting
high density polyethylene (HDPE) pipe to be pulled
inside existing pressure pipelines.
The Swagelining system uses HDPE pipe which has
an outside diameter (O.D.) slightly larger than the
inside diameter (I.D.) of the host
pipe. After sections of HDPE pipe
are butt-fused together to form a
continuous pipe slightly longer
than the pipe to be installed, the
HDPE pipe is pulled through a
reduction die to temporarily
reduce its diameter immediately
before entering the host pipe.
This allows the HDPE to be easily
pulled through the original
pipeline. After the new pipe has
been pulled completely through
the host pipe, the pulling force is
removed. This allows the HDPE to
return naturally toward its original
diameter until it presses tightly
against the inside wall of the host
pipe, eliminating all annual space.
The tight fitting HDPE results in a
flow capacity close to the original
pipeline design, and in many cases
an increase in flow due to the
smooth wall characteristics of the
new HDPE.
Swagelining is suitable for the
rehabilitation of all types of pressure pipe in pipe sizes ranging
from 4” (100mm) up to 48”
(1200mm), and in pipe lengths up
to 3,000 feet (1,000 meters) in a
single pull. This method can be
used to install fully structural pipe
such as PE 4710 DR 11 (200 psi) or
thin wall liners such as PE 4710 DR
46 (30 psi) depending on the condition of the host pipe.
SLIP LINING VS.
SWAGELINING
The Swagelining process has
resemblance to its closet cousin:
slip lining. The process of slip lining involves inserting a new smaller pipe, typically HDPE, inside an
existing host pipe. The O.D of the
HDPE selected is typically 10% to
15% smaller than the I.D. of the
host pipe. This is a requirement to
be able to allow the contractor to
easily pull the new pipe through
the host pipe. The annual space is
then typically filled with grout. As
slip lining will ultimately reduce
flow rates, many projects cannot
afford to deliver a reduced capacity
in times when communities continue to grow and demand continues to increase. Many engineers
have deemed this requirement as
the sole factor to not moving forward with slip lining.
Swagelining has come to the
Swagelining Process
Figure 1: At the job site, sections of
HDPE are butt fused together to form a
single, jointless pipe.
Figure 4: Just before the HDPE enters
the host pipe, its diameter is temporarily
reduced. The HDPE is reduced through
the Swagelining process by up to 12%.
The reduction die ensures that the pipe
has no distortion, as it remains evenly
smooth around the entire circumference.
Figure 2: The host pipe undergoes
preparation by cleaning and camera
inspection.
Figure 5: Rods are removed from the exit
pit as the new pipe is pulled into place.
Figure 3: HDPE pipe enters
insertion pit.
Figure 6: After the HDPE has been
pulled through the entire pipeline, the
pulling force is removed and the HDPE
will naturally expand back to its original
diameter.
NASTT/GLSLA - 2009 Trenchless Report
67
forefront to meet the needs of projects to deliver the
same flow rates as the existing main, and in many cases
an increase in flow. While Swagelining also involves
inserting a new HDPE pipe, the O.D. of the HDPE
selected is slightly larger than the I.D. of the host pipe.
Immediately before the HDPE is pulled into the host
pipe, it passes through the swage die, more commonly
referred to as a reduction die. This temporarily reduces
the diameter of the new pipe by 8% to 12%. The temporary reduction allows the contractor to easily pull
the new HDPE through the host pipe. After the pipe
has been pulled through the host pipe, the pulling
force is removed and the HDPE naturally expands back
to its original diameter, fitting tightly against the host
pipe. As no annular space remains, grouting is not
required.
The result is a new HDPE main which delivers the
same or an increase in flow due to the C-factor of the
new HDPE as the friction/head loss is eliminated from
tuberculation and other deterioration issues. Energy
savings from pumping/delivering through the new
main is also realized. Engineering manuals typically
designate a C-factor of 150 when designing a pipeline
system with HDPE, which will also remain constant
throughout the lifetime of the system.
68
NASTT/GLSLA - 2009 Trenchless Report
AJM PIPELINES
The Swagelining process has seen its market share
expand in South America, Europe, Africa, China,
Australia and Russia with over 745 miles (1200 km) of
successful installations. As large diameter pressure
pipelines come to the end of their life expectancy in
North America, trenchless methods such as
Swagelining are being implemented. AJM Pipelines
has recently been granted license holder for the
Swagelining process in North America. Many of AJM
Pipelines key personnel have worked extensively with
Swagelining projects across the globe, including many
tracing their roots back to British Gas when the technology was first developed. Services that the company offers include upfront consultation, design and
education on the feasibility of Swagelining projects,
to the installation and completion of projects.
The Swagelining process affords federal, municipal
and private markets the opportunity to replace or
rehabilitate their large diameter pressure pipelines in
a manner that is environmentally friendly, while
delivering a new design life on a system which may
last throughout the next century. As infrastructure
carries commodities that are essential to life, finding
the right solutions to address aging infrastructure is
critical. S
#&$"64&:0631*1&-*/& #6%(&5/&&%4
503&"$)"4'"3"4063&26*1.&/5
"TMFBEFSTJO)PSJ[POUBM%JSFDUJPOBM%SJMMJOHXFCFMJFWFUIBURVBMJUZBOEIJHIFSUFDIOJDBM
TUBOEBSETTIPVMEOµUDPNFBUBTUFFQQSJDF5IBUµTXIZTJODFXFµWFCFFOQVTIJOH
UIFCPVOEBSJFTPGESJMMJOHBDIJFWFNFOUXIJMFPQFSBUJOHPOUIFTBNFQSJDJOHMFWFMBT
PVSDPNQFUJUPST"OEXJUIPVSQSPWFOUSBDLSFDPSEZPVDBOSFTUBTTVSFELOPXJOHUIBU
ZPVSQSPKFDUJTJOUIFSJHIUIBOET
(PJOHUP(SFBUFS-FOHUIT
5.
XXXUIFDSPTTJOHDPNQBOZDPN
NASTT/GLSLA - 2009 Trenchless Report
CrossingCo-HalfPageAd.indd 1
69
1/13/09 12:05:22 PM
Index to Advertisers
InDex To ADVerTIsers
AH McElroy Sales & Service (Canada) Ltd.
13
AJM Pipelines
66
American Augers, Inc.
59
AVERTEX Utility Solutions Inc.
24
Beckwith Bemis Inc.
64
Channeline International Ltd.
CIMA+
8
41
Clean Water Works Inc.
OBC
The Crossing Company
69
CUES Canada
69
Delcan Water
32
Dillon Consulting Ltd.
52
Genivar
26, 38
HDD Rotary Sales LLC
Horizontal Technology Inc.
20
4
IPEX Inc.
65
Liquiforce Services (Ontario) Inc.
IFC
Logiball Inc.
58
Melfred Borzall Inc.
PipeMedic by QuakeWrap
3
IBC
Pure Technologies
18, 34
Ratech Electronics
68
Robinson Consultants Inc.
44, 62
RV Anderson Associates Limited
68
Sanexen Aqua Pipe
51
Stantec Consulting Ltd.
56
Trenchless Design Engineering Ltd.
12
Veolia ES Canada Industrial Services Inc.
please support the advertisers who
have made this publication possible
70
NASTT/GLSLA - 2009 Trenchless Report
7
NASTT/GLSLA - 2009 Trenchless Report
71
Canada’s Own
THE WAY IS CLEAR ™
t Watermain Swabbing
t Hydro Vacuum Excavation
t Sewer & Watermain Cleaning
t CCTV Inspection of Sewer & Watermain
t Cured-In-Place-Pipe Lining and Spot Repairs
t Grouting, Test and Seal Joints, Manholes & Services
Integrated Pipeline Rehabilitation
Through State-of-the-art “No-Dig”
Trenchless Technology
72
NASTT/GLSLA - 2009 Trenchless Report
Call 613-745-2444
Toll Free 1-866-695-0155
www.cleanwaterworks.com
John D. Brule, President and CEO