SIMS et applications-Nancy - Académie Lorraine des Sciences
Transcription
SIMS et applications-Nancy - Académie Lorraine des Sciences
La Spectrométrie de Masse d'Ions Secondaires (SIMS): un outil majeur pour l'étude de notre système solaire, les recherches biomédicales et le développement des nanomatériaux Henri-Noël Migeon Département “Science et Analyse des Matériaux” CRP-Gabriel Lippmann 41, rue du Brill L-4422 Belvaux The nanometer scale 100 microns Luxembourg/Nancy: 117 km 100 microns / 100 km = 10-9 1nm / 1 m= 10-9 Outline 1. Ion/matter interaction : impinging and outgoing particles 2. Instrumentation 3. General capabilities Elemental range Ion imaging Depth profiling 3D analysis 4. Applications Geochronology Biomed Nanomaterials 5. Future developments Secondary lon Mass Spectrometry (SIMS) is based upon the sputtering of a few atomic layers from the surface of a sample induced by a “primary ion” bombardment. A primary ion impact triggers a cascade of atomic collisions. Atoms, molecule fragments and ions are ejected C60 bombardment - animation Outline 1. Ion/matter interaction : impinging and outgoing particles 2. Instrumentation 3. General capabilities Elemental range Ion imaging Depth profiling 3D analysis Sensitivity 4. Applications Geochronology Biomed Nanomaterials 5. Future developments Secondary Ion Mass Spectrometry Mass spectrometer Separation by mass to charge ratio (m/z) Chemical analysis (elemental and isotopic) Secondary ions emission Primary ions Ejected particles Neutrals (majority) Charged particles electrons Secondary ions positive ions negative ions Radiations Target André Guinier est né à Nancy où son père Philibert Guinier, membre de l’Académie des Sciences dans la section d’économie rurale, était directeur de l’École Forestière. Il entre à l’École Normale Supérieure en 1930 et prépare une thèse en cristallographie. Ses premiers travaux sont consacrés à la conception et à la réalisation d’une chambre de diffraction des rayons X qui permet d'étudier la diffusion des rayons X au voisinage immédiat du faisceau incident. C'est en étudiant les défauts cristallins que Guinier découvre (en même temps que Preston) ce que l'on a appelé les “zones de Guinier-Preston”, zones de concentration de l’un des types d’atomes composant un alliage (le premier exemple fut Al-Cu). Ces “zones G-P” ont un grand intérêt en métallurgie.Après sa thèse soutenue en 1939, il propose le sujet de thèse de Raimond Castaing qui donnera lieu à la Microsonde de Castaing. Static SIMS Alfred Benninghoven Université de Münster Dynamic SIMS Raimond Castaing (1921 – 1998) Electron microprobe Georges Slodzian Université Paris-Sud Orsay Direct image ion microscope Radius # B-1 (m/q) Si+ Mg+ Al+ Georges Slodzian, Thèse (1964)) Claude Allègre, prix Crawford (= prix Nobel de Géologie) membre Georges Slodzian correspondant IMS 1280 Outline 1. Ion/matter interaction : impinging and outgoing particles 2. Instrumentation 3. General capabilities Elemental range Ion imaging Depth profiling 3D analysis 4. Applications Geochronology Biomed Nanomaterials 5. Future developments Mass Spectrometry 1,00E+ 09 23Na+ 1,00E+ 08 28Si+ 24Mg+ 1,00E+ 07 25Mg+ cnt 1,00E+ 06 26Mg+ 29Si+ 30Si+ 1,00E+ 05 1,00E+ 04 1,00E+ 03 1,00E+ 02 1,00E+ 01 20 22 24 26 Ma sse (a m u) 28 30 Mass Spectrometry 15000 Detection of additives : - Poly(ethyleneglycol)dibenzoate Fingerprint of the polymer - Poly(ethyleneglycol)monobenzoate Abondance (i.a.) 10000 5000 0 100 Detection of elements 200 300 400 m/z 500 600 Mass Spectrometry Ion imaging Ion imaging NanoSIMS 50 : Multicollection Ions primaires 12C- 2 2m 12 14 C N Ma 6 Mas M e1 s s a 2 e s s se 3 Echantillon 1 Ions secondaires 31P- Ma sse 12 7 127I- Ion imaging 12C 12C Carbure de tungstène 2,3μm 1E+06 12C14N 12C Intensité C (coups) Vérification de l’homogénéité du liant Diffusion dans le liant 0,78μm 1E+05 1E+04 0 2 4 μm 6 8 Depth profiling Depth profiling The depth resolution is limited by: - collision cascades (target atoms mixing) - roughening effects effects (non-flat bottom crater) - crater edge effects effects (crater walls) High depth resolution requires low impact energy (250eV to 1keV) and convenient primary beam incidence angle Depth profiling CAMECA IMS6f GVB sans rotation 1,E+09 1,E+08 1,E+07 Intensité en c/s 1,E+06 1,E+05 133Cs 133Cs48Ti 1,E+04 133Cs64Zn 133Cs107A g 133Cs2 1,E+03 1,E+02 1,E+01 1,E+00 1,E-01 0 10 20 30 40 50 Profondeur en nm 60 70 80 3D analysis 3) Imaging + sputtering= 3D Carbon in a Thin-Film Superconductor RAE (IMS 3f) Outline 1. Ion/matter interaction : impinging and outgoing particles 2. Instrumentation 3. General capabilities Elemental range Ion imaging Depth profiling 3D analysis 4. Applications Geochronology Biomed Nanomaterials 5. Future developments Trace element mapping Au- ion image GOLD ANALYSIS IN ARSENOPYRITE Arsenopyrite: FeAsS Field of view 100 x 100 m2 Geochronology 4) Isotopic ratio measurements Geochronology BORON ISOTOPES IN TOURMALINE SILICON ISOTOPES IN GLASS Delta 30Si (per mil) 31 3.904 Counting statistics error : 0.40 per mil Experimental error (1) : 0.45 per mil 11B/10B Counting statistics error : 0.08 per mil 29 Experimental error (1 ) : 0.08 per mil 3.900 27 Error bar : +/-1 25 1 2 3 4 5 6 Spot # 7 8 9 10 11 error bar : +/-1 2 4 6 Spot # OXYGEN ISOTOPES IN ZIRCON 20.0 Delta 18O (per mil) 0 3.896 0 Counting statistics error : 0.12 per mil Experimental error (1s) : 0.17 per mil 10.0 kim5-grain#1 mog_grain#1 kim5-grain#2 kim5-grain#3 0.0 -10.0 0 5 10 15 Spot # 20 25 30 8 10 Geochronology: Zircon radiodating Zircon is one of the most useful geochronometers. Zircon: ZrSiO4 remarquably resistant material two clocks: 235U 207Pb ( ~ 0.7 billion years) years) 238U 206Pb ( ~ 4.4 billion years) years) Oldest zircon: ~4.40 billion years (Australia) Age of the Earth: ~4.55 billion years Courtesy of NORSIMS Geochronology secondary beam primary beam O2 jet sample O2- primary ions , w/o oxygen flooding O2- primary ions , with oxygen flooding Outline 1. Ion/matter interaction : impinging and outgoing particles 2. Instrumentation 3. General capabilities Elemental range Ion imaging Depth profiling 3D analysis 4. Applications Geochronology Biomed Nanomaterials 5. Future developments Bio Med 12C14N 31P 127I 129I Radiotoxicology / Nuclear medecine: Imaging 127I/ 129I distribution in thyroid Raster 60x60 m2 J. L. Guerquin-Kern , Curie Institute, Paris Bio Med 32 S MCF-7 mammary carcinoma cell: use of halogenous markers 12 14 - C N 31 P Field of view: 10m x 10m 19 F 81 Br 127 I Incorporation of BrdU (bromodeoxyuridine), IdU (iododeoxyuridine) and 5FU (5-fluorouracile) compounds in the same cell. The last four images are collected simultaneously from same sputtered volume (multi-collection). Sample from Pr. P. Galle, S.C. 27 INSERM, Faculté de Médecine, Créteil, France Bio Med 12C14N Pharmaco-toxicology: Targeting melanin cells • CN :proteins • P :DNA 0.5 m 31P morphology General Structure of BZA I NanoSIMS J. L. Guerquin-Kern , Curie Institute, Paris 127I Bio Med Bacteria E.coli labelled with 15N at time t = t1 12C14N 12C15N Natural abundance 14N 99,7% 15N 0,3% Analyzed area : (12 x 12) μm2 E.coli labelled with 15N at time t = t2 > t1 Bacteria destroyed by immune system 12C14N 12C15N Bio Med Biology, Cosmetic Molecule CxDy 1H 2H Incorporation of an isotopically (D) labelled active molecule in human hair Analyzed area : (80 x 80) m2 Courtesy of L’Oreal Hairs from St Hélène ……. Reference Hair Hairs from St Hélène 15N: stable isotope tracer used in vegetal cells (20x20) μm2 1,6μm 14N Mushroom cells cultured in 15N enriched media, 15 min Identification of specific sites for N fixation M.Challot, INRA, Nancy. 15N / 14N 15N High levels 15N Outline 1. Ion/matter interaction : impinging and outgoing particles 2. Instrumentation 3. General capabilities Elemental range Ion imaging Depth profiling 3D analysi 4. Applications Geochronology Biomed Nanomaterials 5. Future developments Nanomaterials R&D in Semi conductors Nanomaterials Image depth profile in N-MOS gate: Oxygen Depth = 0 nm Depth = 300 nm Depth = 650 nm Silicium 3) Imaging + sputtering= 3D Phosphorous Boron Arsenic Outline 1. Ion/matter interaction : impinging and outgoing particles 2. Instrumentation 3. General capabilities Elemental range Ion imaging Depth profiling 3D analysis 4. Applications Geochronology Biomed Nanomaterials 5. Future developments High resolution NanoSIMS 50 images of 12C14N and of double-labelled Bacillus subtilis DNA combed on wafers without Cs deposition (top) and with prior Cs deposition (bottom). Field of view : (15x15) μm2 13C15N Centre de Recherche Public – Gabriel Lippmann Belvaux, LUXEMBOURG 4 departments: EVA / IST / SAM / REA