SIMS et applications-Nancy - Académie Lorraine des Sciences

Transcription

SIMS et applications-Nancy - Académie Lorraine des Sciences
La Spectrométrie de Masse d'Ions Secondaires
(SIMS):
un outil majeur pour l'étude de notre système
solaire, les recherches biomédicales et le
développement des nanomatériaux
Henri-Noël Migeon
Département “Science et Analyse des Matériaux”
CRP-Gabriel Lippmann
41, rue du Brill
L-4422 Belvaux
The nanometer scale
100 microns
Luxembourg/Nancy: 117 km
100 microns / 100 km = 10-9
1nm / 1 m= 10-9
Outline
1.
Ion/matter interaction : impinging and
outgoing particles
2. Instrumentation
3. General capabilities
Elemental range
Ion imaging
Depth profiling
3D analysis
4. Applications
Geochronology
Biomed
Nanomaterials
5. Future developments
Secondary lon Mass
Spectrometry (SIMS) is based
upon the sputtering of a few
atomic layers from the surface of a
sample induced by a “primary
ion” bombardment. A primary ion
impact triggers a cascade of
atomic collisions. Atoms, molecule
fragments and ions are ejected
C60 bombardment - animation
Outline
1.
Ion/matter interaction : impinging and
outgoing particles
2. Instrumentation
3. General capabilities
Elemental range
Ion imaging
Depth profiling
3D analysis
Sensitivity
4. Applications
Geochronology
Biomed
Nanomaterials
5. Future developments
Secondary Ion Mass Spectrometry
Mass spectrometer
Separation by mass to charge ratio
(m/z)
Chemical analysis
(elemental and isotopic)
Secondary ions emission
Primary
ions
Ejected
particles
Neutrals (majority)
Charged particles
electrons
Secondary ions
positive ions
negative ions
Radiations
Target
André Guinier est né à Nancy où son père Philibert Guinier,
membre de l’Académie des Sciences dans la section d’économie
rurale, était directeur de l’École Forestière. Il entre à l’École
Normale Supérieure en 1930 et prépare une thèse en
cristallographie. Ses premiers travaux sont consacrés à la
conception et à la réalisation d’une chambre de diffraction des
rayons X qui permet d'étudier la diffusion des rayons X au
voisinage immédiat du faisceau incident.
C'est en étudiant les défauts cristallins que Guinier découvre (en
même temps que Preston) ce que l'on a appelé les “zones de
Guinier-Preston”, zones de concentration de l’un des types
d’atomes composant un alliage (le premier exemple fut Al-Cu). Ces
“zones G-P” ont un grand intérêt en métallurgie.Après sa thèse
soutenue en 1939, il propose le sujet de thèse de Raimond Castaing
qui donnera lieu à la Microsonde de Castaing.
Static SIMS
Alfred Benninghoven
Université de Münster
Dynamic SIMS
Raimond Castaing
(1921 – 1998)
Electron microprobe
Georges Slodzian
Université Paris-Sud Orsay
Direct image ion microscope
Radius # B-1 (m/q)
Si+
Mg+
Al+
Georges Slodzian, Thèse (1964))
Claude Allègre,
prix Crawford (= prix Nobel de Géologie)
membre
Georges Slodzian
correspondant
IMS 1280
Outline
1.
Ion/matter interaction : impinging and
outgoing particles
2. Instrumentation
3. General capabilities
Elemental range
Ion imaging
Depth profiling
3D analysis
4. Applications
Geochronology
Biomed
Nanomaterials
5. Future developments
Mass Spectrometry
1,00E+ 09
23Na+
1,00E+ 08
28Si+
24Mg+
1,00E+ 07
25Mg+
cnt
1,00E+ 06
26Mg+
29Si+ 30Si+
1,00E+ 05
1,00E+ 04
1,00E+ 03
1,00E+ 02
1,00E+ 01
20
22
24
26
Ma sse (a m u)
28
30
Mass Spectrometry
15000
Detection of additives :
- Poly(ethyleneglycol)dibenzoate
Fingerprint of the polymer
- Poly(ethyleneglycol)monobenzoate
Abondance (i.a.)
10000
5000
0
100
Detection of elements
200
300
400
m/z
500
600
Mass Spectrometry
Ion imaging
Ion imaging
NanoSIMS 50 :
Multicollection
Ions
primaires
12C-
2
2m 12 14 C N
Ma
6
Mas
M
e1
s
s
a
2
e
s
s
se 3
Echantillon
1
Ions
secondaires
31P-
Ma
sse
12
7
127I-
Ion imaging
12C
12C
Carbure de
tungstène
2,3μm
1E+06
12C14N
12C
Intensité C (coups)
Vérification de l’homogénéité
du liant
Diffusion dans le liant
0,78μm
1E+05
1E+04
0
2
4
μm
6
8
Depth profiling
Depth profiling
The depth resolution is limited by:
- collision cascades (target atoms mixing)
- roughening effects
effects (non-flat bottom crater)
- crater edge effects
effects (crater walls)
High depth resolution requires
low impact energy (250eV to
1keV) and convenient primary
beam incidence angle
Depth profiling
CAMECA IMS6f
GVB sans rotation
1,E+09
1,E+08
1,E+07
Intensité en c/s
1,E+06
1,E+05
133Cs
133Cs48Ti
1,E+04
133Cs64Zn
133Cs107A
g
133Cs2
1,E+03
1,E+02
1,E+01
1,E+00
1,E-01
0
10
20
30
40
50
Profondeur en nm
60
70
80
3D analysis
3) Imaging + sputtering= 3D
Carbon in a Thin-Film Superconductor RAE (IMS 3f)
Outline
1.
Ion/matter interaction : impinging and
outgoing particles
2. Instrumentation
3. General capabilities
Elemental range
Ion imaging
Depth profiling
3D analysis
4. Applications
Geochronology
Biomed
Nanomaterials
5. Future developments
Trace element mapping
Au- ion image
GOLD ANALYSIS IN ARSENOPYRITE
Arsenopyrite: FeAsS
Field of view 100 x 100 m2
Geochronology
4) Isotopic ratio measurements
Geochronology
BORON ISOTOPES IN TOURMALINE
SILICON ISOTOPES IN GLASS
Delta 30Si (per mil)
31
3.904
Counting statistics error : 0.40 per mil
Experimental error (1) : 0.45 per mil
11B/10B
Counting statistics error : 0.08 per mil
29
Experimental error (1 ) : 0.08 per mil
3.900
27
Error bar : +/-1
25
1
2
3
4
5
6
Spot #
7
8
9
10
11
error bar : +/-1
2
4
6
Spot #
OXYGEN ISOTOPES IN ZIRCON
20.0
Delta 18O (per mil)
0
3.896
0
Counting statistics error : 0.12 per mil
Experimental error (1s) : 0.17 per mil
10.0
kim5-grain#1
mog_grain#1
kim5-grain#2
kim5-grain#3
0.0
-10.0
0
5
10
15
Spot #
20
25
30
8
10
Geochronology: Zircon radiodating
Zircon is one of the most useful
geochronometers.
Zircon: ZrSiO4
remarquably resistant material
two clocks:
235U 207Pb ( ~ 0.7 billion years)
years)
238U 206Pb ( ~ 4.4 billion years)
years)
Oldest zircon: ~4.40 billion years (Australia)
Age of the Earth: ~4.55 billion years
Courtesy of NORSIMS
Geochronology
secondary beam
primary beam
O2 jet
sample
O2- primary ions , w/o
oxygen flooding
O2- primary ions , with
oxygen flooding
Outline
1.
Ion/matter interaction : impinging and
outgoing particles
2. Instrumentation
3. General capabilities
Elemental range
Ion imaging
Depth profiling
3D analysis
4. Applications
Geochronology
Biomed
Nanomaterials
5. Future developments
Bio Med
12C14N
31P
127I
129I
Radiotoxicology
/ Nuclear medecine:
Imaging 127I/ 129I
distribution in thyroid
Raster 60x60 m2
J. L. Guerquin-Kern , Curie Institute, Paris
Bio Med
32
S
MCF-7 mammary carcinoma cell:
use of halogenous markers
12 14 -
C N
31
P
Field of view:
10m x 10m
19
F
81
Br
127
I
Incorporation of BrdU (bromodeoxyuridine), IdU (iododeoxyuridine) and
5FU (5-fluorouracile) compounds in the same cell.
The last four images are collected simultaneously from same sputtered volume (multi-collection).
Sample from Pr. P. Galle, S.C. 27 INSERM, Faculté de Médecine, Créteil, France
Bio Med
12C14N
Pharmaco-toxicology:
Targeting melanin cells
• CN :proteins
• P :DNA
0.5 m
31P
morphology
General Structure of BZA
I
NanoSIMS
J. L. Guerquin-Kern , Curie Institute, Paris
127I
Bio Med
Bacteria
E.coli labelled with 15N
at time t = t1
12C14N
12C15N
Natural abundance
14N 99,7%
15N 0,3%
Analyzed area : (12 x 12) μm2
E.coli labelled with 15N
at time t = t2 > t1
Bacteria destroyed by immune
system
12C14N
12C15N
Bio Med
Biology, Cosmetic
Molecule CxDy
1H
2H
Incorporation of an isotopically (D) labelled
active molecule in human hair
Analyzed area : (80 x 80) m2
Courtesy of L’Oreal
Hairs from St Hélène …….
Reference Hair
Hairs from St Hélène
15N:
stable isotope tracer used in vegetal cells
(20x20) μm2
1,6μm
14N
Mushroom cells cultured in 15N enriched
media, 15 min
Identification of specific sites for N fixation
M.Challot, INRA, Nancy.
15N
/ 14N
15N
High levels 15N
Outline
1.
Ion/matter interaction : impinging and
outgoing particles
2. Instrumentation
3. General capabilities
Elemental range
Ion imaging
Depth profiling
3D analysi
4. Applications
Geochronology
Biomed
Nanomaterials
5. Future developments
Nanomaterials
R&D in Semi conductors
Nanomaterials
Image depth profile in N-MOS gate:
Oxygen
Depth =
0 nm
Depth = 300 nm
Depth = 650 nm
Silicium
3) Imaging + sputtering= 3D
Phosphorous
Boron
Arsenic
Outline
1.
Ion/matter interaction : impinging and
outgoing particles
2. Instrumentation
3. General capabilities
Elemental range
Ion imaging
Depth profiling
3D analysis
4. Applications
Geochronology
Biomed
Nanomaterials
5. Future developments
High resolution NanoSIMS 50 images of 12C14N and
of double-labelled Bacillus subtilis DNA combed on
wafers without Cs deposition (top) and with prior Cs
deposition (bottom).
Field of view : (15x15) μm2
13C15N
Centre de Recherche Public – Gabriel Lippmann
Belvaux, LUXEMBOURG
4 departments: EVA / IST / SAM / REA